Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB và ΔCFD có
AE=CF
\(\widehat{EAB}=\widehat{FCD}\)
AB=CD
Do đó: ΔAEB=ΔCFD
Suy ra:BE=FD
Xét ΔADE và ΔCBF có
AE=CF
\(\widehat{DAE}=\widehat{BCF}\)
AE=CF
Do đó: ΔADE=ΔCBF
Suy ra: DE=BF
Xét tứ giác BEDF có
BE=DF
DE=BF
Do đó: BEDF là hình bình hành
AE = CF (gt)
mà AE // CF (ABCD là hình chữ nhật)
=> AECF là hình bình hành
=> FA // CE
=> AFD = ECF (2 góc đồng vị)
mà ECF = CEB (2 góc so le trong, AB // CD)
=> AFD = CEB (1)
AB = CD (ABCD là hình chữ nhật)
mà AE = CF (gt)
=> AB - AE = CD - CF
=> EB = DF (2)
Xét tam giác NEB và tam giác MFD có:
NEB = MFD (theo 1)
EB = FD (theo 2)
EBN = FDM (2 góc so le trong, AB // CD)
=> Tam giác NEB = Tam giác MFD (g.c.g)
=> BN = DM (2 cạnh tương ứng)
O là trung điểm của BD (3)
=> O là trung điểm của AC (ACBD là hình chữ nhật) (4)
=> O là trung điểm của EF (AECF là hình bình hành) (5)
AEI = ABD (2 góc so le trong, EI // BD)
CFK = CDB (2 góc so le trong, FK // BD)
mà ABD = CBD (2 góc so le trong, AB // CD)
=> AEI = CFK (6)
EI // BD (gt)
FK // DB (gt)
=> EI // FK (7)
Xét tam giác EAI và tam giác FCK có:
IEA = KFC (theo 6)
EA = FC (gt)
EAI = FCK (= 900)
=> Tam giác EAI = Tam giác FCK (g.c.g)
=> EI = FK (2 cạnh tương ứng)
mà EI // FK (theo 7)
=> EIFK là hình bình hành
mà O là trung điểm của EF (theo 5)
=> O là trung điểm của IK (8)
Từ (3), (4), (5) và (8)
=> AC, EF, IK đồng quy tại O là trung điểm của BD
O là trung điểm của AC và BD
=> OA = OC = \(\frac{AC}{2}\)
OB = OD = \(\frac{BD}{2}\)
mà AC = BD (ABCD là hình chữ nhật)
=> OA = OD = OB = OC
=> Tam giác OAD cân tại O
mà AOD = 600
=> Tam giác OAD đều
=> AD = OA = OD
mà AD = 1 cm
AD = BC (ABCD là hình chữ nhật)
=> OA = OD = OC = OB = BC = 1 cm
=> AC = 2OA = 2 . 1 = 2 cm
Xét tam giác BAC vuông tại B có:
\(AC^2=BA^2+BC^2\) (định lý Pytago)
\(AB^2=AC^2-BC^2\)
\(=2^2-1^2\)
\(=4-1\)
= 3
\(AB=\sqrt{3}\)
\(S_{ABCD}=AB\times BC=\sqrt{3}\times1=\sqrt{3}\left(cm^2\right)\)
a.- Xét △KDC có:
DC//BF (ABCD là hình bình hành).
=>\(\dfrac{CK}{KF}=\dfrac{DK}{BK}\) (định lí Ta-let). (1)
- Xét △KDM có:
MD//BD (ABCD là hình bình hành).
=>\(\dfrac{DK}{BK}=\dfrac{MK}{CK}\) (định lí Ta-let). (2)
- Từ (1) và (2) suy ra:
\(\dfrac{CK}{KF}=\dfrac{KM}{CK}\). Vậy \(CK^2=KM.KF\)
b. - Xét △KDC có:
DC//BF (ABCD là hình bình hành).
=> \(\dfrac{DK}{BK}=\dfrac{CK}{CF}\) (định lí Ta-let). (3)
- Xét △KDM có:
MD//BD (ABCD là hình bình hành).
=>\(\dfrac{DK}{BK}=\dfrac{MK}{CM}\) (định lí Ta-let). (4)
- Từ (3) và (4) suy ra: \(\dfrac{CK}{CF}=\dfrac{MK}{CM}\)
=>\(\dfrac{CK}{CF}=\dfrac{MK}{CM}=\dfrac{CK+MK}{CF+CM}\) (t/c tỉ lệ thức).
=>\(\dfrac{CK}{CF}=\dfrac{CM}{CF+CM}\)
=>\(CK=\dfrac{CM.CF}{CF+CM}\)
=>\(\dfrac{1}{CK}=\dfrac{CF+CM}{CM.CF}\)
=>\(\dfrac{1}{CK}=\dfrac{1}{CF}+\dfrac{1}{CM}\)
c.
Do \(\widehat{DBC}=\widehat{CBE}\Rightarrow BC\) là phân giác trong góc \(\widehat{DBE}\) trong tam giác BDE
Theo định lý phân giác: \(\dfrac{BE}{BD}=\dfrac{CE}{CD}\) (1)
Trong tam giác MCD, do \(AF||CD\) nên theo định lý Talet: \(\dfrac{AF}{CD}=\dfrac{MF}{MC}\)
Trong tam giác MCE, do \(BF||CE\) nên theo định lý Talet: \(\dfrac{BF}{CE}=\dfrac{MF}{MC}\)
\(\Rightarrow\dfrac{AF}{CD}=\dfrac{BF}{CE}\Rightarrow\dfrac{CE}{CD}=\dfrac{BF}{AF}\) (2)
(1);(2) \(\Rightarrow\dfrac{BF}{AF}=\dfrac{BE}{BD}\) (đpcm)
a/Gọi O là giao điểm của AC và BD.
Ta có :OA=OC,OB=OD
Mà BE=DF(gt)⇒OE=FO
Tứ giác AECF có hai đường chéo AC và EF cắt nhau tại trung điểm O nên AECF là hình bình hành⇒FA=CE
đợi nhé, câu b đg suy nghĩ