K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Cách 1:

Gọi O là giao điểm của AC và BD.

 

Ta có:

\(\begin{array}{l}\overrightarrow {AG}  = \overrightarrow {AB}  + \overrightarrow {BG}  = \overrightarrow a  + \overrightarrow {BG} ;\\\overrightarrow {CG}  = \overrightarrow {CB}  + \overrightarrow {BG}  = \overrightarrow {DA}  + \overrightarrow {BG}  = - \overrightarrow b  + \overrightarrow {BG} ;\end{array}\)(*)

Lại có: \(\overrightarrow {BD} =\overrightarrow {BA}  + \overrightarrow {AD} =  - \overrightarrow a  + \overrightarrow b \).

\(\overrightarrow {BG} ,\overrightarrow {BD} \) cùng phương và \(\left| {\overrightarrow {BG} } \right| = \frac{2}{3}BO = \frac{1}{3}\left| {\overrightarrow {BD} } \right|\)

\( \Rightarrow \overrightarrow {BG}  = \frac{1}{3}\overrightarrow {BD}  = \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right)\)

Do đó (*) \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AG}  = \overrightarrow a  + \overrightarrow {BG}  = \overrightarrow a  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\\\overrightarrow {CG}  = -\overrightarrow b  + \overrightarrow {BG}  = -\overrightarrow b  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b ;\end{array} \right.\)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)

24 tháng 9 2023

Cách 2:

Gọi AE, CF là các trung tuyến trong tam giác ABC.

Ta có: 

\(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AE}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\overrightarrow {AB}  + \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)} \right] \\= \frac{1}{3}\left( {2\overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b \)

\(\overrightarrow {CG}  = \frac{2}{3}\overrightarrow {CF}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\left( {\overrightarrow {CB}  + \overrightarrow {CD} } \right) + \overrightarrow {CB} } \right] = \frac{1}{3}\left( {2\overrightarrow {CB}  + \overrightarrow {CD} } \right) = \frac{1}{3}\left( { - 2\overrightarrow {AD}  - \overrightarrow {AB} } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b \)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)

7 tháng 11 2021

c) \(\overrightarrow{BG}+\overrightarrow{GC}=\overrightarrow{BC}\ne\overrightarrow{GA}\)

d) \(\overrightarrow{GB}+\overrightarrow{GC}=\dfrac{1}{2}\overrightarrow{GM}\ne\overrightarrow{GM}\)

 

NV
19 tháng 10 2020

Do EF là đường trung bình tam giác ABC \(\Rightarrow I\) là trung điểm AD

\(\overrightarrow{AI}=\frac{1}{2}\overrightarrow{AD}=\frac{1}{2}\overrightarrow{u}\)

\(\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AD}=\frac{2}{3}\overrightarrow{u}\)

\(\overrightarrow{DE}=\frac{1}{2}\overrightarrow{BA}=-\frac{1}{2}\overrightarrow{AB}=-\overrightarrow{AF}=-\overrightarrow{v}\)

\(\overrightarrow{DC}=\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AD}=-\overrightarrow{AB}+\overrightarrow{AD}=-2\overrightarrow{AF}+\overrightarrow{AD}=\overrightarrow{u}-2\overrightarrow{v}\)

19 tháng 10 2020

\(\overrightarrow{u}=AE\) ạ mình sai đề

12 tháng 5 2017

A B C D O M N E F
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).

27 tháng 10 2023

Bài 1:

Gọi K là trung điểm của BC

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔCAB có

O,K lần lượt là trung điểm của CA,CB

=>OK là đường trung bình

=>OK//AB và \(OK=\dfrac{AB}{2}\)

=>\(\overrightarrow{OK}=\dfrac{\overrightarrow{AB}}{2}\)

=>\(\overrightarrow{AB}=2\cdot\overrightarrow{OK}\)

Xét ΔOBC có OK là đường trung tuyến

nên \(\overrightarrow{OB}+\overrightarrow{OC}=2\cdot\overrightarrow{OK}\)

=>\(\overrightarrow{AB}=\overrightarrow{OB}+\overrightarrow{OC}\)

=>M trùng với B

Bài 2:

Xét ΔABC có

M,P lần lượt là trung điểm của AB,AC

=>MP là đường trung bình của ΔABC

=>MP//BC và MP=BC/2

=>MP=CN

mà MP//NC

nên MPCN là hình bình hành

=>\(\overrightarrow{MP}=\overrightarrow{NC}\)

=>\(\overrightarrow{MP}=-\overrightarrow{CN}\)

=>\(\overrightarrow{MP}+\overrightarrow{CN}=\overrightarrow{0}\)

mà \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\)

nên K trùng với P

15 tháng 11 2021

\(a,\) \(\overrightarrow{IA}=2\overrightarrow{IB}-4\overrightarrow{IC}\)

\(\overrightarrow{IA}=2\overrightarrow{IB}-2\overrightarrow{IC}-2\overrightarrow{IC}=2\overrightarrow{CB}-2\overrightarrow{IC}\)

\(=2\left(\overrightarrow{AB}-\overrightarrow{AC}\right)-2\left(\overrightarrow{AC}-\overrightarrow{AI}\right)\)

\(\overrightarrow{IA}=2\overrightarrow{AB}-2\overrightarrow{AC}-2\overrightarrow{AC}+2\overrightarrow{AI}\)

\(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}\)

\(b,\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(1\right)\)

\(\overrightarrow{JG}=\overrightarrow{AG}-\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AM}-\dfrac{2}{3}\overrightarrow{AB}\)\((\) \(\) \(M\)  \(trung\) \(điểm\) \(BC)\)

\(\overrightarrow{JG}=\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{3}-\dfrac{2}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=-\dfrac{1}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\overrightarrow{IJ}=-4\overrightarrow{JG}\Rightarrow I,J,G\) \(thẳng\) \(hàng\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Từ M kẻ đường thẳng song song với AB, cắt AD tại E.

Khi đó tứ giác ABME là hình bình hành.

Do đó: \(\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {AE} \).

Dễ thấy: \(AE = BM = \frac{1}{2}BC = \frac{1}{2}AD\)

\( \Rightarrow \overrightarrow {AE}  = \frac{1}{2}\overrightarrow {AD} \)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Vậy \(\overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Chú ý khi giải

+) Dựng hình hình hành sao cho đường chéo là vecto cần biểu thị, 2 cạnh của nó song song với giá của hai vecto đang biểu thị theo.