K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

Xét tam giác ADB có : M là trung điểm của AB(gt) 

                                       N là trung điểm của AD(gt)

=> MN là đường trung bình của tam giác ADB ( đ/n) 

=> MN//DB và MN =1/2 DB ( t/c) 

Xét tam giác AMN và tam giác ABD có : MN // BD ( cmt)

tam giác AMN đồng dạng với tam giác ABD ( hq đ/y ta lét)   => SAMN/SABD=(1/2)^2=1/4   (1)

Xét tam giác ABD và tam giác CDBcó 

AB=CD( ABCD là hbh ) 

góc A = góc C (nt)

AD=cb(nt)

=> tam giác ABD = tam giác CDB (cgc)

=> tam giác ABD đồng dạng tam giác CDB(t/c)   

=> tam giác ABD=1/2 HBh ABCD(2)

Từ 1 2 => SAMN/SABCD=1/8

 

 

 

6 tháng 2 2022

Vẽ AH⊥BC⊥BC cắt MN tại H'

Ta có : AH'=HH'=12AH12AH(vì MN là trung điểm => AH′=12AHAH′=12AH)

Lại có:

SABC=12.AH.BC=60cm2SABC=12.AH.BC=60cm2 và SAMN=12AH′.MNSAMN=12AH′.MN.Mà

MN là đường trung bình của tam giác ABC=>MN=12BCMN=12BC

=>SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)

Vậy SAMN=15cm2

29 tháng 10 2017

mk chứng minh luôn câu a và câu b thánh 1 câu

undefinedundefined

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

13 tháng 6 2019

a,Hình bình hành ABCD có AB=CD

⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN

Mặt khác, M,N lần lượt là trung điểm của AB và CD

Do đó, AM//CN

Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)

b, Tứ giác AMCN là hình bình hành

⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)

⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)

Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^

ΔEDNΔEDN và ΔKBMΔKBM có:

M2ˆ=N2ˆM2^=N2^

DN=BMDN=BM

B1ˆ=D1ˆB1^=D1^

⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)

⇒ED=KB⇒ED=KB (đpcm)

c, Gọi O là giao điểm của AC và BD.

ABCD là hình bình hành

⇒OA=OC⇒OA=OC

ΔCABΔCAB có:

MA=MBMA=MB

OA=OCOA=OC

MC cắt OB tại K

⇒⇒ K là trọng tâm của ΔCABΔCAB

Mặt khác, I là trung điểm của BC

⇒⇒ IA,OB,MC đồng quy tại K

Hay AK đi qua trung điểm I của BC (đpcm)

13 tháng 6 2019

A B M D C N E K

Mk vẽ ko đc đẹp lắm , xl nha . Chỗ AC bạn kẻ thêm 1 nét đứt và tên là O nha

18 tháng 12 2014

Dễ thấy SABCD = 2SADC (1)

Gọi O là giao điểm của AC và BD thì O là trung điểm của AC.

Tam giác ADC và tam giác CMD có chung đường cao kẻ từ C nên cho ta :\(\frac{S_{ADC}}{S_{CMD}}=\frac{AD}{MD}=2\)hay SADC = 2SCMD (2)

Tương tự : \(\frac{S_{CMD}}{S_{DME}}=\frac{CM}{ME}=3\)( vì E là trọng tâm của tam giác ADC ) hay SCMD = 3SDME (3)

Từ (1) (2) (3) suy ra SABCD = 12SDME = 12 m2

16 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành