Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ đường cao AH của hình bình hành ABCD (H thuộc CD)
Tam giác AHD vuông tại H có góc D = 30o => tam giác AHD là nửa tam giác đều cạnh AD
=> 2AH=AD
<=> AH=AD/2=8/2=4(cm)
=> SABCD=CD.AH=7,5.4=30(cm2)
Kẻ DH ^ AB tại H
⇒ A H = A D 2 = 4 c m
Áp dụng định lý Pytago trong D vuông ADH Þ DH = 4 3 cm.
ÞSABCD = DH.AB = 120cm2
Xét Δ vuông ADC ta có :
\(AD=\dfrac{CD}{2}\)
mà AD là cạnh góc vuông, CD là cạnh huyền
⇒ Δ ADC là tam giác nửa đều
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ADC}=60^O\\\widehat{DCA}=30^O\end{matrix}\right.\)
\(\Rightarrow\widehat{ADC}=\widehat{ABC}=60^O\) (hai góc đối hình bình hành) (1)
Ta lại có : \(\widehat{BAC}=\widehat{DCA}\) (so le trong)
mà \(\widehat{DCA}=30^O\)
\(\Rightarrow\widehat{BAC}=30^2\)
mà \(\widehat{DAB}=\widehat{DAC}+\widehat{BAC}\)
\(\Rightarrow\widehat{DAB}=90^o+30^o=120^o\)
\(\Rightarrow\widehat{BCD}=\widehat{DAB}=120^o\) (hai góc đối hình bình hành) (2)
(1), (2)⇒ điều phải tính toán theo đề
30cm2
dc=7hay5