Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BEFA có
BE//AF
BE=FA
BE=BA
=>BEFA là hình thoi
b: góc B=180-60=120 độ
=>góc IBE=60 độ
mà IB=BE
nên ΔIBE đều
=>góc EIB=60 độ=góc A
=>AIEF là hình thang cân
c:
Xét ΔABD có
BF là trung tuyến
BF=AD/2
Do đo: ΔABD vuông tại B
Xét tứ giác BICD có
BI//CD
BI=CD
góc IBD=90 độ
Do đó: BICD là hình chữ nhật
d: Xét ΔAED có
EF là trung tuyến
EF=AD/2
=>ΔAED vuông tại E
=>góc AED=90 độ
a, Ta có do: AD=2AB mà AD=2AF nên AF=AB
Mặt khác AF=BE(tự cm) và AB=EF nên AF=BE=AB=EF
suy ra AFEB là hình thoi suy ra \(AE\perp BF\)
b, ABCD là hình bình hành nên \(\widehat{A}=\widehat{C_1}=60^o\)(1)
Mà AF=AB nên \(\Delta AFB\)cân tại A có góc A =60 độ nên tam giác AFB đều suy ra \(\widehat{AFB}=60^o\)
mặt khác AD//BC \(\Rightarrow\widehat{AFB}=\widehat{FBE}=60^o\)(2)
Từ (1) và (2) suy ra FDCB là hình thang cân.
c, Ta có AB=BM=DC mà BM//DC nên BDCM là hình bình hành
lại có:
BF=AF mà AF=FD nên FD=BF suy ra \(\Delta FDB\)cân tại F \(\Rightarrow\widehat{D_1}=\widehat{B_1}=\frac{180^o-\widehat{BFD}}{2}=30^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Mà \(\widehat{D_1}+\widehat{D_2}=\widehat{ADC}=120^o\Rightarrow\widehat{D_2}=90^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Hình bình hành BDCM có góc D2=90 độ nên BDCM là hình chữ nhật