K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Nối AK, ta có:

AB // HK (giả thiết)

⇒ ∠(A1 ) =∠(K1 ) (hai góc so le trong)

+) Lại có: AH // BK (giả thiết)

⇒ ∠ (A2 ) = ∠(K2 ) (hai góc so le trong)

Xét ΔABK và ΔKHA, ta có:

∠(A1 ) =∠(K1 ) ( chứng minh trên)

AK cạnh chung

∠(K2 ) =∠(A2 ) (chứng minh trên)

Suy ra: ΔABK =ΔKHA (g.c.g)

Vậy: AB = KH; BK = AH ( 2 cạnh tương ứng)

2 tháng 6 2017

Nối A với K

Xét tam giác ABK và tam giác AHK có:

AK: cạnh chung

góc BAK = góc AKH (AB // HK)

góc HAK = góc AKB (AH //BK)

=> tam giác ABK = tam giác AHK

=> AB = HK (hai cạnh tương ứng)

Ta có: tam giác ABK = tam giác AHK

=> AH = BK (hai cạnh tương ứng)

1 tháng 12 2017

kẻ đoạn thẳng AK

Xét tamgiác KAH và tam giác AKB

góc HAK = góc BKA (2 góc so le trong do AK cắt AH// BK )

cạnh AK chung

góc HKA = góc BAK (2 góc so le trong do AB //HK )

=> tam giác KAH = tam giác AKB ( g.c.g.)

=> AB=HK (2 cạnh tương ướng )

=> AH = BK (2 cạnh tương ướng )

đúng không..............................................

1 tháng 12 2018

Mình không thể vẽ ra hình đề bài cho được.

a) Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{KAC}\) chung

Do đó: ΔAHB=ΔAKC(cạnh huyền-góc nhọn)

⇒AH=AK(hai cạnh tương ứng)

b) Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

\(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(dấu hiệu nhận biết hai đường thẳng song song)

9 tháng 4 2018

a) Xét tam giác vuông AHB và tam giác vuông AHC có:

Cạnh AH chung

HB = HC   

\(\Rightarrow\Delta AHB=\Delta AHC\)  (Hai cạnh góc vuông)

b) Do HK // AB nên \(\widehat{AHK}=\widehat{BAH}\)  (Hai góc so le trong)

Lại có \(\widehat{BAH}=\widehat{CAH}\)

\(\Rightarrow\widehat{KAH}=\widehat{KHA}\)

Vậy thì \(\widehat{KHC}=\widehat{KCH}\) (Cùng phụ với hai góc trên)

\(\Rightarrow\) tam giác KHC cân tại K.

c) Ta có KA = KH = KC nên K là trung điểm AC.

Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.

Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)

Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)

d) Ta có \(2\left(AH+BK\right)=2\left(3HG+3GK\right)=6\left(HG+GK\right)\)

Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK

Vậy nên \(6\left(HG+GK\right)>6.HK=3.2HK=3AC\)

Tóm lại: \(2\left(AH+BK\right)>3AC\)

17 tháng 8 2018

Bài giải : 

a) Xét tam giác vuông AHB và tam giác vuông AHC có:

Cạnh AH chung

HB = HC   

⇒ΔAHB=ΔAHC  (Hai cạnh góc vuông)

b) Do HK // AB nên ^AHK=^BAH  (Hai góc so le trong)

Lại có ^BAH=^CAH

⇒^KAH=^KHA

Vậy thì ^KHC=^KCH (Cùng phụ với hai góc trên)

 tam giác KHC cân tại K.

c) Ta có KA = KH = KC nên K là trung điểm AC.

Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.

Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)

Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)

d) Ta có 2(AH+BK)=2(3HG+3GK)=6(HG+GK)

Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK

Vậy nên 6(HG+GK)>6.HK=3.2HK=3AC

Tóm lại: 2(AH+BK)>3AC

Bn tự vẽ hình nha

Xét tg AHB và tg AHC có 

AB=AC;  góc AHB = góc AHC =90 độ; 

Ah cạnh chung

=> tg AHB = tg AHC (ch cgv)

=> BH = HC

=> H là trung điểm BC 

Xét tg BKC có 

H là trung điểm BC (cmt)

DH//KC ( gt)

=> D là trung điểm BK

  (  đpcm )

Ầy mk chỉ biết câu a thui mà đằng nào chúng ta mới 2k5 thui biết vận dụng cả lớp 8 là tốt lắm rùi ....!