Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^
a) thay m=2 ... tự thay
\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)
=>2y+x-2=0(1)
=>-2y+2x-1=0(2)
=>-(2y-2x+1)=0(2)
=>2y-2x+1=0(2)
vẽ đồ thị hàm số ra
=>x=1;\(y=\frac{1}{2}\)hoặc 0,5
b,c ko biết nên ns thế nào ^^
Từ phương trình (2) ta có y = 3m – 1 – mx. Thay vào phương trình (1) ta được:
x + m ( 3 m – 1 – m x ) = m + 1 ( m 2 – 1 ) x = 3 m 2 – 2 m – 1 (3)
Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất, tức là
m 2 – 1 ≠ 0 ⇔ m ≠ ± 1
Khi đó x = 3 m 2 − 2 m − 1 m 2 − 1 = m − 1 3 m + 1 m − 1 m + 1 = 3 m + 1 m + 1 y = 3 m − 1 − m . 3 m + 1 m + 1 = m − 1 m + 1
Hay x = 3 m + 1 m + 1 = 3 − 2 m + 1 y = m − 1 m + 1 = 1 − 2 m + 1
Vậy x, y nguyên khi và chỉ khi 2 m + 1 nguyên.
Do đó m + 1 chỉ có thể là −2; −1; 1; 2. Vậy m ∈ {−3; −2; 0} hoặc m = 1 (loại)
Đáp án:C
a: Khi m=-1 thì hệ phương trình sẽ trở thành:
\(\left\{{}\begin{matrix}-x+y-3=3\\x-y-2\cdot\left(-1\right)+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x+y=6\\x-y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}0x=3\left(vôlý\right)\\x-y=-3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
b: \(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)(1)
=>\(\left\{{}\begin{matrix}mx+y=6\\x+my=2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=6-mx\\x+m\left(6-mx\right)=2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+6m-m^2x=2m-1\\y=6-mx\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(1-m^2\right)=-4m-1\\y=6-mx\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m^2-1\right)=4m+1\\y=6-mx\end{matrix}\right.\)
TH1: m=1
Hệ phương trình (1) sẽ trở thành:
\(\left\{{}\begin{matrix}x\cdot0=4\cdot1+1=5\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
=>Loại
TH2: m=-1
Hệ phương trình (1) sẽ trở thành:
\(\left\{{}\begin{matrix}x\cdot0=-4+1=-3\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
=>Loại
Th3: \(m\notin\left\{1;-1\right\}\)
Hệ phương trình (1) sẽ tương đương với \(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=6-mx=\dfrac{6\left(m^2-1\right)-m\left(4m+1\right)}{m^2-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=\dfrac{6m^2-6-4m^2-m}{m^2-1}=\dfrac{2m^2-m-6}{m^2-1}\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì m/1<>1/m
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Để x nguyên thì \(4m+1⋮m^2-1\)
=>\(\left(4m+1\right)\left(4m-1\right)⋮m^2-1\)
=>\(16m^2-1⋮m^2-1\)
=>\(16m^2-16+15⋮m^2-1\)
=>\(m^2-1\inƯ\left(15\right)\)
=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=>\(m^2\in\left\{2;0;4;6;16\right\}\)
=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)
mà m nguyên
nên \(m\in\left\{0;2;4;-2;-4\right\}\left(2\right)\)
Để y nguyên thì \(2m^2-m-6⋮m^2-1\)
=>\(2m^2-2-m-4⋮m^2-1\)
=>\(m+4⋮m^2-1\)
=>\(\left(m+4\right)\left(m-4\right)⋮m^2-1\)
=>\(m^2-16⋮m^2-1\)
=>\(m^2-1-15⋮m^2-1\)
=>\(m^2-1\inƯ\left(-15\right)\)
=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=>\(m^2\in\left\{2;0;4;6;16\right\}\)
=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)
mà m nguyên
nên \(m\in\left\{0;2;4;-2;-4\right\}\left(3\right)\)
Từ (2),(3) suy ra \(m\in\left\{0;2;4;-2;-4\right\}\)
Thử lại, ta sẽ thấy m=4;m=-2 không thỏa mãn x nguyên; m=4;m=-2 không thỏa mãn y nguyên
=>\(m\in\left\{0;2;-4\right\}\)
a, tự làm
b,\(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=my\\m^2y-y=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=my\\y\left(m^2-1\right)\left(1\right)\end{cases}}\)
để hpt có nghiệm duy nhất =>pt(1) có nghiệm duy nhất =>\(m^2-1\ne0\Rightarrow m\ne\pm1\)
c, \(\Rightarrow\hept{\begin{cases}x=my\\y=\frac{m+1}{m^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m}{m-1}\\y=\frac{1}{m-1}\end{cases}}\)
để x>0,y>0 =>\(\hept{\begin{cases}\frac{m}{m-1}>0\\\frac{1}{m-1>0}\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}m< 0\\m>1\end{cases}}\\m>0\end{cases}}\Rightarrow m>0\)
d,để x+2y=1=>\(\frac{m}{m-1}+\frac{2}{m-1}=1\Leftrightarrow m+2=m-1\)
\(\Leftrightarrow0m=-3\)(vô lí)
e,ta có x+y=\(\frac{m}{m-1}+\frac{1}{m-1}=\frac{m+1}{m-1}=1+\frac{2}{m-1}\)(lưu ý chỉ làm đc với m\(\inℤ\))
để\(1+\frac{2}{m-1}\inℤ\Rightarrow m-1\inư\left(2\right)\)
\(\Rightarrow m-1\in\left\{\pm1;\pm2\right\}\Rightarrow m\in\left\{3;2;0\right\}\)
Đáp án C