Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ: m x + 3 m − 2 y + m − 3 = 0 2 x + m + 1 y − 4 = 0 ⇔ m x + 3 m − 2 y = 3 − m 2 x + m + 1 y = 4
Ta có:
D = m 3 m − 2 2 m + 1 = m 2 − 5 m + 4 = m − 1 m − 4
D x = 3 − m 3 m − 2 4 m + 1
= 3 − m m + 1 − 4 3 m − 2 = − m + 11 = 1 − m m + 11
D y = m 3 − m 2 4 = 4 m − 6 + 2 m = 6 m − 6 = 6 m − 1
Hệ phương trình có nghiệm duy nhất
⇔ D ≠ 0 ⇔ m − 1 m − 4 ≠ 0 ⇔ m ≠ 1 m ≠ 4
⇒ x = D x D = 1 − m m + 11 m − 1 m − 4 = m + 11 4 − m ( 1 ) y = D y D = 6 m − 1 m − 1 m − 4 = 6 m − 4 ( 2 )
Từ 2 ⇒ m − 4 y = 6 ⇔ m y = 6 + 4 y ⇔ m = 6 + 4 y y = 6 y + 4
Thay vào (1) ta được:
x = 6 y + 4 + 11 : 4 − 6 y − 4 = − 6 + 15 y 6 = − 1 − 15 6 y
Đáp án cần chọn là: C
TH1: x>0
Hệ phương trình sẽ trở thành \(\left\{{}\begin{matrix}2x-y=1\\mx+y=m+1\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m}\ne-\dfrac{1}{1}=-1\)
=>\(m\ne-2\)
TH2: x<0
Hệ phương trình sẽ trở thành:
\(\left\{{}\begin{matrix}-2x-y=1\\mx+y=m+1\end{matrix}\right.\)
Hệ phương trình có nghiệm duy nhất khi \(-\dfrac{2}{m}\ne-\dfrac{1}{1}=-1\)
=>m<>2
a: Khi m=2 thì hệ sẽ là:
2x-y=2 và x+2y=1
=>x=1; y=0
b: \(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x=1-my\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x=1-m\left(mx-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x=1-m^2x+2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(1+m^2\right)=2m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{2m^2+m}{m^2+1}-2=\dfrac{-m}{m^2+1}\end{matrix}\right.\)
c: x+y=1 thì \(\dfrac{2m+1}{m^2+1}+\dfrac{-m}{m^2+1}=1\)
=>m^2+1=m+1
=>m=0 hoặc m=-1
Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(\left|a\right|\ge2;\left|b\right|\ge2\right)\)
\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x^3+\dfrac{1}{x^3}\right)+\left(y^3+\dfrac{1}{y^3}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)^3-3\left(y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\a^3+b^3=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\\left(a+b\right)^3-3ab\left(a+b\right)=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\125-15ab=15m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=9-m\end{matrix}\right.\)
\(\Rightarrow a,b\) là nghiệm của phương trình \(t^2-5t+9-m=0\left(1\right)\)
a, Nếu \(m=3\), phương trình \(\left(1\right)\) trở thành
\(t^2-5t+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y^2-3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=3\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3\pm\sqrt{5}}{2}\\y=1\end{matrix}\right.\)
Vậy ...
b, \(\left(1\right)\Leftrightarrow t=\dfrac{5\pm\sqrt{4m-11}}{2}\left(m\ge\dfrac{11}{4}\right)\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5\pm\sqrt{4m-11}}{2}\\b=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5\pm\sqrt{4m-11}}{2}\\y+\dfrac{1}{y}=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(5\pm\sqrt{4m-11}\right)+2=0\left(2\right)\\2y^2-\left(5\mp\sqrt{4m-11}\right)+2=0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(2\right)\) có nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(5\pm\sqrt{4m-11}\right)^2-16\ge0\\\dfrac{5\pm\sqrt{4m-11}}{2}>0\\1>0\end{matrix}\right.\)
\(\Leftrightarrow...\)
a) Khi m=1 hpt có vô số nghiệm
Khi m=-1 hpt vô nghiệm
Khi \(m\ne\pm1\Rightarrow\left\{{}\begin{matrix}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2m-mx\\x=\dfrac{2m^2-m-1}{\left(m^2-1\right)}=\dfrac{2m+1}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=\dfrac{m}{m+1}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\left(1\right)\\y=\dfrac{m}{m+1}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow x\left(m+1\right)=2m+1\Leftrightarrow mx+x=2m+1\Leftrightarrow m=\dfrac{1-x}{x-2}\left(3\right)\)
Thay \(\left(3\right)\) vào \(\left(2\right):y=\dfrac{\dfrac{1-x}{x-2}}{\dfrac{1-x}{x-2}+1}=x-1\)
\(\hept{\begin{cases}mx+y=m^2+m+1\\-x+my=m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(my-m^2\right)+y-m^2-m-1=0\\x=my-m^2\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(m^2y-m^2\right)+\left(y-1\right)-\left(m^3+m\right)=0\\x=my-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+1\right)\left(y-m-1\right)=0\\x=my-m^2\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}y=m+1\\x=m\left(m+1\right)-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m\\y=m+1\end{cases}}\)
\(\Rightarrow\)\(x^2+y^2=2m^2+2m+1=2\left(m+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(m=\frac{-1}{2}\) hay hệ có nghiệm \(\left(x;y\right)=\left(\frac{-1}{2};\frac{1}{2}\right)\)
Ta có: D = m − 1 1 1 m − 1 = m 2 − 2 m + 1 − 1 = m 2 − 2 = m ( m − 2 )
D x = 3 m − 4 1 m m − 1 = 3 m − 4 m − 1 − m = m 2 − 8 m + 4 = ( m − 2 ) ( 2 m − 3 )
D y = m − 1 3 m − 4 1 m = m 2 − m − 3 m + 4 = m 2 − 4 m + 4 = ( m − 2 ) 2
Hệ phương trình có nghiệm duy nhất ⇔ D ≠ 0 ⇔ m ( m − 2 ) ≠ 0 ⇔ m ≠ 0 m ≠ 2 ⇒ x = D x D = 3 m − 2 m ( 1 ) y = D y D = m − 2 m ( 2 )
Từ (1) ⇔ x m = 3 m - 2 ⇔ m = 2 3 − x
Thay vào (2) ta được: y = 1 - 2 m = 1 - ( 3 - x ) = x - 2
Vậy y = x – 2
Đáp án cần chọn là: A