Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}2.\left(m-1\right).x-2.m.y=6m-2\\2.\left(m-1\right).x-\left(m-1\right).y=\left(m-1\right).\left(m+5\right)\end{cases}}\)
=> -2.m.y + ( m-1 ) .y = 6m - 2- ( m2 - m + 5.m -5 )
=> ( -m - 1 ) . y = -m2 + m + 2
hay y = \(\frac{m^2-m-2}{m+1}=\frac{\left(m+1\right).\left(m-2\right)}{\left(m+1\right)}\)
= m - 2
Với m \(\ne\)-1 => y = m- 2
Khi đó x = \(\frac{m+5+y}{2}=\frac{m+5+m-2}{2}=\frac{2m+3}{2}\)
b) \(\hept{\begin{cases}y=\left(m+5\right)+2.x\\m.y=\left(3.m-1\right)-\left(m-1\right).x\end{cases}}\)hay \(\hept{\begin{cases}y=2.x-\left(m+5\right)\\y=\frac{-\left(m-1\right).x+\left(3m-1\right)}{m}\end{cases}}\)
Vậy để hai đường thẳng của hệ cắt nhau cho giá trị nằm ở góc phần tư thứ IV của Oxy => \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< \frac{m+5}{2}\\x>\frac{3m-1}{m-1}\end{cases}\Rightarrow\hept{\begin{cases}m>3\\m< 6\end{cases}\Rightarrow}\hept{\begin{cases}m=4\\m=5\end{cases}}}\)( Mình cũng không chắc phần này ở đoạn đầu tiên nha )
Xét phương trình hoành độ giao điểm 2 đường thẳng trên ta có:
$2x-m-3=m-4$
$⇒x=\dfrac{2m-1}{2}$
Nên điểm đó có tọa độ $M(\dfrac{2m-1}{2};m-4)$
suy ra điểm đó nằm trong góc phần tư thứ (VI) của mặt phẳng
\(\left\{{}\begin{matrix}\dfrac{2m-1}{2}>0\\m-4< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m< 4\end{matrix}\right.\)
Mà $m∈Z$ nên \(m\in\left\{1;2;3\right\}\)
$m=1⇒M(\dfrac{1}{2};-3)$
$m=2⇒M(\dfrac{3}{2};-2)$
$m=3⇒M(\dfrac{5}{2};-1)$
Vậy \(m\in\left\{1;2;3\right\}\)thỏa mãn đề