K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

Kẻ \(DI\perp BC,EK\perp BC\left(I,K\in BC\right)\Rightarrow DI//EK\Rightarrow\widehat{IDF}=\widehat{KEF}\) (so le trong)

\(\widehat{B}=\widehat{KCE}\left(=\widehat{ACB}\right)\)

\(\Delta DIB=\Delta EKC\left(ch-gn\right)\Rightarrow DI=EK\) (2 cạnh t/ứ)

\(\Delta IDF=\Delta KEF\left(g.c.g\right)\Rightarrow DF=EF\)

Vậy F là trung điểm của DE.

24 tháng 11 2016

ê kẻ đc hình chưa

 

27 tháng 10 2019

a) Ta có D đối xứng vs a qua O (gt)

=> O là trung điểm của AD

Xét tứ giác ABCD có

BC cắt AD tại O

Mặt khác ta có O là trung điểm của BC

O là trung điểm của AD

nên tứ giác ABCD là hình bình hành

Xét hình bình hành ABCD có góc A = 900

=> Hình bình hànhABCD là hình chữ nhật

b, Xét tam giác AED có

AH = HE

AO = DO

=> HO là đường trung bình của tam giác

=> HO // ED

=> góc H bằng goc E vì đồng vị

Mà AH vuông góc vs BC

=> góc H = 90o

=> E bằng 90o

=> AE vuông góc vs ED

Xét tam giác AED c0s E bằng 90 độ nên tam giác ADE vuông

c,Đợi tí mình giải tiếp nhé

27 tháng 10 2019

a) Ta có: A và D đối xứng với nhau qua O(gt)

⇒O là trung điểm của AD

Xét tứ giác ABDC có:

O là trung điểm của đường chéo BC(gt)

O là trung điểm của đường chéo AD(cmt)

\(BC\cap AD=\left\{O\right\}\)

Do đó: ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)

\(\widehat{CAB}=90\)độ(ΔCAB cân tại A)

nên ABDC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

b)* chứng minh ΔAED vuông

Kẻ EO

Xét ΔOHA (\(\widehat{OHA}=90\) độ) và ΔOHE (\(\widehat{OHE}=90\) độ) có

OH là cạnh chung

HA=HE(gt)

Do đó: ΔOHA=ΔOHE(hai cạnh góc vuông)

⇒OA=OE(hai cạnh tương ứng)

\(OA=\frac{AD}{2}\)(do O là trung điểm của AD)

nên \(OE=\frac{AD}{2}\)

Xét ΔAED có:

OE là đường trung tuyến ứng với cạnh AD (do O là trung điểm của AD)

\(OE=\frac{AD}{2}\)(cmt)

nên ΔAED vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)

* chứng minh CE⊥BE

Ta có: AO là đường trung tuyến ứng với cạnh huyền BC của ΔCAB vuông tại A(do O là trung điểm của BC)

\(AO=\frac{BC}{2}\)(định lí 1 về từ hình chữ nhật áp dụng vào tam giác vuông)

mà AO=OE(cmt)

nên \(EO=\frac{BC}{2}\)

Xét ΔCEB có:

EO là đường trung tuyến ứng với cạnh BC(do O là trung điểm của BC)

\(EO=\frac{BC}{2}\)(cmt)

nên ΔCEB vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)

hay \(\widehat{CEB}=90\) độ

⇒CE⊥BE(đpcm)