K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\({a^3} + \left( { - {b^3}} \right) = \left[ {a + \left( { - b} \right)} \right]\left[ {{a^2} - a.\left( { - b} \right) + {{\left( { - b} \right)}^2}} \right] = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

Từ đó ta có \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

9 tháng 12 2017

B=1/2.1.2-1/2.2.3+1/2.2.3-1/2.3.4+...+1/2n(n+1)-1/2(n+1)(n+2)

B=1/2[(1/1.2+1/2.3+...+1/n(n+1))-(1/2.3+1/3.4+...+1/(n+1)(n+2))]

Tới đây bạn tự làm tiếp nha, tương tự như bài 1/1.2+1/2.3+..+1/n(n+1) á bạn.Cái này bạn ghi ra bạn sẽ hiểu, mình viết hơi bị lủng củng.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\({\left( {a - b} \right)^3} = {\left[ {a + \left( { - b} \right)} \right]^3} = {a^3} + 3.{a^2}.\left( { - b} \right) + 3.a.{\left( { - b} \right)^2} + {\left( { - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)

Từ đó ta có \({\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)

2 tháng 11 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(A=1-\frac{1}{n+1}\)

2 tháng 11 2019

a) Ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

           \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

           \(A=1-\frac{1}{n+1}\)

           \(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)

           \(A=\frac{n}{n+1}\)

Học tốt nha^^

1 tháng 11 2016

mày điên à, làm gì có câu hỏi kiểu này?

1 tháng 11 2016

mày bị điên rồi hả câu hỏi thế này làm gì có người giải được

Cho một biểu thức, biết biểu thức là:\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)Các số cần tìm cho, biết:- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).a) Tìm a, b, c,...
Đọc tiếp

Cho một biểu thức, biết biểu thức là:

\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)

Các số cần tìm cho, biết:

- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).

- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).

a) Tìm a, b, c, d, m và n.

b) Nếu thêm p vào bên phải của biểu thức, biết \(p\ne0\)và ở giữa p có 16 số chẵn, nhưng các số chẵn ≈ 7 ; 8. Các số chẵn chia hết cho 5. Tính giá trị của biểu thức mới.

c) Tính:

 \(am^2\left(5^3+abcd-\left(ab^2-cd^2\right)\right)+\left(\sqrt{\left(m+1\right)^{2c}}-\sqrt{\left(50c\right)^c\times2n}\right)..\)

d) Tính giá trị của X, biết rằng:

\(X=9ab-9cd+9mn+...+\frac{9mn}{8}.\)

Chứng minh rằng: \(X⋮45\)và giá trị của ... là số có tử số của số đó bé hơn tử số của số \(\frac{975}{4}\)là Y. Biết rằng:

\(Y=\frac{15-1}{15+1}\left(d^d-\frac{d}{m}\right)n\sqrt{c}.\)

 

0
1.Cho biểu thức: \(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}{433}-\frac{4}{229.433}\) a,Đặt \(a=\frac{1}{229},b=\frac{1}{433}\) ,rút gọn M theo a,b b, Tính giá trị của M. 2. Tính giá trị của biểu thức: \(P=x^4-17x^3+17x^2-17x+20\)khi x=16 3 Chứng tỏ rằng các biểu thức sau ko phụ thuộc vào giá trị của biến x: \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\) 4. Biến tổng sau thành...
Đọc tiếp

1.Cho biểu thức:

\(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}{433}-\frac{4}{229.433}\)

a,Đặt \(a=\frac{1}{229},b=\frac{1}{433}\) ,rút gọn M theo a,b

b, Tính giá trị của M.

2. Tính giá trị của biểu thức: \(P=x^4-17x^3+17x^2-17x+20\)khi x=16

3 Chứng tỏ rằng các biểu thức sau ko phụ thuộc vào giá trị của biến x:

\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

4. Biến tổng sau thành tích: a(x-y)+b(y-x)

5.Nhân các lũy thừa có cùng cơ số

a,\(a.a^2.a^3.a^4a^5.a^6...a^{150}\)

b, \(x^{2-k}.x^{1-k}.x^{2k-3}\)\(\left(k\in N,x\ne0\right)\)

6. Xét biểu thức:

\(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)

a, Rút gọn P

b, Có hay k cặp số (x,y) để P=0; P=10?

7.Cho \(\Delta\)ABC nhọn. Vẽ ra phía ngoài của tam giác vuông cân ABE tại B và tam giác vuông cân ACF tại C. Trên tia đối của tia AH lấy điểm I sao cho AI=BC(H là chân đường vuông góc hạ từ A tới BC. Chứng minh:

a, \(\Delta\) ABI = \(\Delta\) BEC

b, BI=CE và BI vuông góc vs CE

c, 3 đường thẳng AH,CE và BF đồng quy tại 1 điểm

Mọi ng giải hộ mik mấy bài này vs ạ, bài nào mấy bạn giải đc thì giải hộ vs ạ . Giải chi tiết nha. Cảm ơn ạ

1
30 tháng 8 2018

Bài 1:

a) Đặt \(a=\dfrac{1}{229},b=\dfrac{1}{433}\), ta được

\(M=3a\left(2+b\right)-a\left(1-b\right)-4ab\)

\(M=6a+3ab-a+ab-4ab\)

\(M=5a\)

b) Ta có:

\(M=5a\)

\(M=\dfrac{5}{229}\)

Bài 2:

\(x=16\)

\(\Rightarrow x+1=17\left(1\right)\)

Thay (1) vào P, ta được:

\(P=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1+3\)

\(P=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1+3\)

\(P=4\)

Bài 3:

\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

\(=-24\)

Vậy biểu thức không phụ thuộc vào x

Bài 4:

\(a\left(x-y\right)+b\left(y-x\right)\)

\(=a\left(x-y\right)-b\left(x-y\right)\)

\(=\left(x-y\right)\left(a-b\right)\)

Bài 5:

a) \(a.a^2.a^3.a^4.a^5a^6...a^{150}\)

\(=a^{1+2+3+4+5+6+...+150}\)

Đặt \(A=1+2+3+...+150\)

\(A=\dfrac{150-1+1}{2}\left(1+150\right)\)

\(A=75.151\)

\(A=2265\)

Vậy 1 + 2 + 3 +...+ 150 = 2265 (1)

Thay (1) vào ta được

\(a^{1+2+3+4+5+6+...+150}=a^{2265}\)

b) \(x^{2-k}.x^{1-k}.x^{2k-3}\)

\(=x^{2-k+1-k+2k-3}\)

\(=x^0\)

\(=1\)

Bài 6:

a) \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)

\(P=5x^2+15xy-15xy+10y^2-5y^2+10\)

\(P=5x^2+5y^2+10\)

b) \(P=0\)

\(\Rightarrow5x^2+5y^2+10=0\)

\(\Rightarrow5\left(x^2+y^2+2\right)=0\)

\(\Rightarrow x^2+y^2+2=0\)

\(\Rightarrow x^2+y^2=-2\)

\(x^2\ge0\)

\(y^2\ge0\)

\(\Rightarrow x^2+y^2\ge0\)

\(x^2+y^2=-2\)

=> Không tồn tại cặp số x và y để P = 0

\(P=10\)

\(\Rightarrow5x^2+5y^2+10=10\)

\(\Rightarrow5x^2+5y^2=0\)

\(\Rightarrow5\left(x^2+y^2\right)=0\)

\(\Rightarrow x^2+y^2=0\)

\(x^2\ge0\) với mọi x

\(y^2\ge0\) với mọi y

\(\Rightarrow x^2+y^2\ge0\)

\(x^2+y^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)