K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

a/ Hai hàm số có đồ thị // với nhau khi

\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)

b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ

\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)

c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được

\(b=ma+3\)

\(\Leftrightarrow ma+3-b=0\)

Để phương trình này không phụ thuôc m thì

\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)

Tọa độ điểm cần tìm là M(0, 3)

20 tháng 11 2016

d/ Ta có khoản cách từ O(0,0) tới (d) là 1

\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)

\(\Leftrightarrow\sqrt{1+m^2}=3\)

\(\Leftrightarrow m^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)

a: Thay x=1 và y=4 vào (1), ta được:

\(m\cdot1+1=4\)

=>m+1=4

=>m=3

Thay m=3 vào y=mx+1, ta được:

\(y=3\cdot x+1=3x+1\)

Vì a=3>0

nên hàm số y=3x+1 đồng biến trên R

b: Để đồ thị hàm số (1) song song với (d) thì

\(\left\{{}\begin{matrix}m^2=m\\m+1\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne0\end{matrix}\right.\)

=>m-1=0

=>m=1

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$

Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$

b. Để đths đi qua điểm $A(-1;1)$ thì:

$y_A=(m-1)x_A+m$

$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$

$\Leftrightarrow 1=1$ (luôn đúng)

Vậy đths luôn đi qua điểm A với mọi $m$

c.

$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$

Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:

\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)

d,

ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$

$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$

$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$

24 tháng 12 2021

\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)

5 tháng 2 2021

a. Vì đường thẳng (d) đi qua A(1;-1) \(\Rightarrow1\cdot m+3=-1\Rightarrow m=-4\)

b. \(\left(d\right):y=-4x+3\) 

Đồ thị hàm số y=-4x+3 là đường thẳng (d) đi qua 2 điểm C(0;3) và D(\(\dfrac{3}{4}\);0) 

( hình bạn tự vẽ nhé)

c. Để (d) song song với (d') ⇔ \(\left\{{}\begin{matrix}m=2\\3\ne-1\end{matrix}\right.\) \(\Leftrightarrow m=2\)

d. Hoành độ giao điểm 2 đường thẳng (d) và (d') là nghiệm của phương trình: 

\(-4x+3=2x-1\Leftrightarrow2x+4x=3+1\Leftrightarrow6x=4\Leftrightarrow x=\dfrac{2}{3}\)

⇒ y=\(2\cdot\dfrac{2}{3}-1=\dfrac{4}{3}-1=\dfrac{1}{3}\)