Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với hàm số y=f(-2x+1) có
Với hàm số y=g(ax+b) có
y'=a.g'(ax+b)>0
Vì hai hàm số đã cho có cùng khoảng đồng biến nên rơi vào trường hợp
và
*Chú ý đồ thị đi lên hàm số đồng biến; đồ thị đi xuống hàm số nghịch biến.
Chọn đáp án C.
Đáp án B
Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.
Cách giải:
Xét giao điểm của đồ thị hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ thị cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy => phương trình g(x) = 0 không có nghiệm
Đáp án C.
Ta có ∀ x ∈ R
Khi đó
Suy ra hàm số đồng biến trên khoảng (–1;0) và (1;+ ∞)
Đáp án D.
Kí hiệu trên đồ thị như hình bên.
Đặt u = f x . Ta có g x = f f x = f u .
g ' x = u ' . f ' u = f ' x . f ' u
g ' x = 0 ⇔ f ' x = 0 f ' u = 0
f ' x = 0 ⇔ x 1 = 0 x 2 = a 2 < a < 3 (nhìn hình để xác định a).
f ' u = 0 ⇔ u = x 1 u = x 2 ⇔ f x = x 1 = 0 f x = x 2 = a 2 < a < 3
f x = 0 ⇔ x ∈ b ; 1 ; c = x 3 ; x 4 ; x 5
f x = a (nhìn vào đồ thị thể hiện bên ta thấy đồ thị hàm số f x cắt đường thẳng y = a (với 2 < a < 3 ) tại ba điểm phân biệt do vậy phương trình f x = a có ba nghiệm phân biệt x 6 ; x 7 ; x 8 .
Rõ ràng x 1 ,..., x 8 là đôi một khác nhau.
Kết hợp lại thì phương trình g ' x = 0 có 8 nghiệm phân biệt.