Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) theo tính chất ta có: f(0+0)= f(0)+f(0)
=> f(0)=f(0)+f(0)
=> f(0)-f(0)=f(0)+f(0)-f(0)
=> 0=f(0)
hay f(0)=0
b) f(0)=f(-x+x)=f(-x)+f(x)
=>0=f(-x)+f(x)
=> f(-x)=0-f(x)=-f(x)
c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
\(f\left(x_1\right)=ax_1\) ; \(f\left(x_2\right)=ax_2\) ; \(f\left(x_1x_2\right)=ax_1x_2\)
Để \(f\left(x_1\right)f\left(x_2\right)=f\left(x_1x_2\right)\)
\(\Leftrightarrow ax_1.ax_2=ax_1x_2\)
\(\Leftrightarrow a^2x_1x_2=ax_1x_2\)
\(\Leftrightarrow a^2=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)
Vậy \(a=1\)
ta có:
\(f\left(x_1\right)=kx_1;f\left(x_2\right)=kx_2=>f\left(x_1-x_2\right)=k.\left(x_1-x_2\right)=kx_1-kx_2\)
vậy \(f\left(x_1-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
tick mk nhé
Bài 1:
nếu x1<x2=>2018.x1-3<2018.x2
=>f(x1)<f(x2)
Bài 2:
nếu x dương=>100x2+2 dương
nếu x âm=>100x2+2 dương vì x2 luôn dương
=>f(x)=f(-x)
Bài 3:
nếu x1<x2=>-2019x1+1<2019x2+1
=>f(x1)<f(x2)