K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2021

Phương trình d: \(y=k\left(x-1\right)+1=kx-k+1\)

Phương trình hoành độ giao điểm (C) và (d):

\(\dfrac{2x+4}{1-x}=kx-k+1\)

\(\Leftrightarrow kx^2-\left(2k-3\right)x+k+3=0\)

\(\Delta=\left(2k-3\right)^2-4k\left(k+3\right)=-24k+9\ge0\Rightarrow k\le\dfrac{3}{8}\)

\(\left\{{}\begin{matrix}x_M+x_N=\dfrac{2k-3}{k}\\x_M.x_N=\dfrac{k+3}{k}\end{matrix}\right.\)

\(MN^2=\left(x_M-x_N\right)^2+\left(y_M-y_M\right)^2=90\)

\(\Leftrightarrow\left(k^2+1\right)\left(x_M-x_N\right)^2=90\)

\(\Leftrightarrow\left(k^2+1\right)\left[\left(x_M+x_N\right)^2-4x_Mx_N\right]=90\)

\(\Leftrightarrow\left(k^2+1\right)\left[\dfrac{\left(2k-3\right)^2}{k^2}-\dfrac{4\left(k+3\right)}{k}\right]=90\)

\(\Leftrightarrow\left(k^2+1\right)\left(3-8k\right)=30k^2\)

\(\Leftrightarrow8k^3+27k^2+8k-3=0\)

\(\Leftrightarrow\left(k+3\right)\left(8k^2+3k-1\right)=0\)

\(\Leftrightarrow...\)

24 tháng 4 2021

Cho cos x + sin x =\(\dfrac{3}{4}\) . Tính giá trị biểu thức A = \(\left|sinx-cosx\right|\)

2 tháng 10 2017

Phương trình đường thẳng d: y = kx − 3

Phương trình hoành độ giao điểm của (P) và  d : - x 2 + 4 x - 3 = k x - 3

⇔ - x 2 + 4 - k x = 0 ⇔ x - x + 4 - k = 0 1

d cắt đồ thị (P) tại 2 điểm phân biệt khi (1) có 2 nghiệm phân biệt ⇔ 4 - k ≠ 0 ⇔ k ≠ 4

Ta có E x 1 ; k x 1 − 3 ,   F x 2 ; k x 2 − 3 với x 1 ,   x 2 là nghiệm phương trình (1)

Δ O E F  vuông tại O ⇒ O E → .   O F → = 0 ⇔ x 1 . x 2 + k x 1 − 3 k x 2 − 3 = 0

⇔ x 1 . x 2 1 + k 2 − 3 k x 1 + x 2 + 9 = 0 ⇔ 0. 1 + k 2 − 3 k ( 4 − k ) + 9 = 0

⇔ k 2 − 4 k + 3 = 0 ⇔ k = 1 k = 3

Đáp án cần chọn là: D

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

30 tháng 10 2023

(P) có đỉnh I(1;1) và đi qua A(2;3) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=1\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\4a+2b+c=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-2a\\4a+2\cdot\left(-2a\right)+c=3\\b^2-4ac=-4a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=3\\b=-2a\\4a^2-12a+4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\4a^2-8a=0\\b=-2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=3\\4a\left(a-2\right)=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\\left[{}\begin{matrix}a=0\left(loại\right)\\a=2\left(nhận\right)\end{matrix}\right.\\b=-2\cdot2=-4\end{matrix}\right.\)

=>c=3;a=2;b=-4

=>\(S=3^2+2^2+\left(-4\right)^2=25+4=29\)

=>Chọn C

AH
Akai Haruma
Giáo viên
10 tháng 11 2017

Lời giải:

Gọi pt đường thẳng $d$ là: \(y=kx+b\)

Do \(A\in (d)\Rightarrow 1=-3k+b\Leftrightarrow b=3k+1\)

Suy ra \((d):y=kx+3k+1\)

PT hoành độ giao điểm:

\(x^3+3x^2+1-(kx+3k+1)=0\)

\(\Leftrightarrow x^3+3x^2-(kx+3k)=0\)

\(\Leftrightarrow (x+3)(x^2-k)=0\) (1)

Để 2 đths giao nhau tại 3 điểm phân biệt thì (1) phải có 3 nghiệm phân biệt, do đó \(x^2-k=0\) phải có hai nghiệm phân biệt khác -3

\(\Rightarrow \left\{\begin{matrix} \Delta=4k>0\\ (-3)^2-k\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k>0\\ k\neq 9\end{matrix}\right.\)

17 tháng 12 2020

Đường thẳng (d) có dạng \(y=kx+m\)

\(A\left(0;2\right)\in\left(d\right)\Rightarrow m=2\)

\(\Rightarrow y=kx+2\left(d\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(x^2+\left(4-k\right)x+1=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta=\left(k-2\right)\left(k-6\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}k>6\\k< 2\end{matrix}\right.\)

Ta có \(x_1=\dfrac{k-4+\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow E\left(\dfrac{k-4+\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\right)\)

\(x_1=\dfrac{k-4-\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow F\left(\dfrac{k-4-\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\right)\)

Tọa độ trung điểm \(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\)

\(x-2y+3=0\left(d'\right)\)

\(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\in\left(d'\right)\Rightarrow\dfrac{k-4}{2}-\left(k^2-4k+4\right)+3=0\)

\(\Leftrightarrow2k^2-9k+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{9+\sqrt{33}}{2}\left(l\right)\\k=\dfrac{9-\sqrt{33}}{2}\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow k=\dfrac{9-\sqrt{33}}{2}\)

P/s: Không biết đúng kh.

7 tháng 12 2016

Toán lớp 9.

9 tháng 6 2019

Gọi d: y=ax+ b

Đường thẳng d đi qua N( 1; -1) nên -1= a+ b

  suy ra b= -2.

Vậy hàm số cần tìm là  y= x-2.

Chọn B.

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)

c: Điểm M,N ở đâu vậy bạn?