Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{4}x^2=2x-3\)
\(\Leftrightarrow x^2=8x-12\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{4}\cdot2^2=1\\y=\dfrac{1}{4}\cdot6^2=9\end{matrix}\right.\)
(đơn vị đo trên các trục tọa độ là xentimet)
Lời giải:
a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x. Vẽ đường thẳng qua B(0; 2) và E(-1; 0) được đồ thị hàm số y = 2x + 2.
b) Tìm tọa độ của điểm A: giải phương trình 2x + 2 = x, tìm được x = -2. Từ đó tìm được x = -2, từ đó tính được y = -2, ta có A(-2; -2).
c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.
a) Đồ thị hàm số \(y=x\) là 1 đường thẳng đi qua 2 điểm O \(\left(0;0\right)\) và E\(\left(1;1\right)\)
Đồ thị hàm số \(y=2x+2\) là 1 đường thẳng đi qua 2 điểm B \(\left(0;2\right)\) và D \(\left(-1;0\right)\)
b) Hoành độ giao điểm A của 2 đường thẳng đã cho là nghiệm của pt:
\(x=2x+2\)
\(\Leftrightarrow\) \(x-2x=2\)
\(\Leftrightarrow\) \(-x=2\)
\(\Leftrightarrow\) \(x=-2\)
Tại \(x=-2\) thì giá trị của y là: \(y=2.\left(-2\right)+2=-2\)
Vậy tọa độ điểm A \(\left(-2;-2\right)\)
c) Đường thẳng song song với trục tung Ox và cắt trục hoành tại điểm B(0;2)
\(\Rightarrow\) Suy ra phương trình đường thẳng có dạng \(y=2x\)
Hoành độ giao điểm C của 2 đường thẳng y=2x và y=x là nghiệm của pt: 2x=x
\(\Rightarrow\) Tọa độ điểm C (2;2)
\(S_{ABC}=S_{ADO}+S_{BCOD}\)
a) – Vẽ đường thẳng (1) qua gốc tọa độ O và điểm (1; 2)
-Vẽ đường thẳng (2) qua gốc tọa độ O và điểm (1; 0,5)
-Vẽ đường thẳng (3) qua hai điểm (0; 6) và (6; 0).
b) Gọi A, B theo thứ tự là giao điểm của đường thẳng (3) với các đường thẳng (1) và (2), ta có:
- x + 6 = 2x => x = 2 => y = 4 => A(2; 4)
- x + 6 = 0,5x => x = 4 => y = 2 => B(4; 2)
a: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{4}x^2=2x-3\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=9\end{matrix}\right.\)