K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

13 tháng 8 2017

Chọn D.

TXĐ: D = R.

Đồ thị hàm số có 3 điểm cực trị ⇔ y' = 0 có ba nghiệm phân biệt  ⇔ m -1 > 0  ⇔ m > 1(*) 

3 điểm cực trị của đồ thị hàm số là: A(0;1), 

Hàm số đã cho là hàm số chẵn nên đồ thị hàm số nhận Oy làm trục đối xứng

Ta có 

Kết hợp với điều kiện (*) => m = 2 

Làm theo bào toán trắc nghiệm như sau:

Hàm số đã cho có 3 điểm cực trị khi ab < 0  

Chỉ có đáp án D thỏa mãn.

NV
13 tháng 12 2021

a. Hàm có 3 cực trị \(\Rightarrow m< 0\)

\(y'=8x^3+4mx=4x\left(2x^2+m\right)=0\Rightarrow\left[{}\begin{matrix}x=0;y=-\dfrac{3m}{2}\\x=-\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\\x=\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\end{matrix}\right.\)

Trong đó \(A\left(0;-\dfrac{3m}{2}\right)\) là cực đại và B, C là 2 cực tiêu

Do tam giác ABC luôn cân tại A \(\Rightarrow\) tâm I của đường tròn ngoại tiếp luôn nằm trên trung trực BC hay luôn nằm trên Oy

Mà tứ giác ABCO nội tiếp \(\Rightarrow OI=AI\Rightarrow I\)  là trung điểm OA (do I, O, A thẳng hàng, cùng nằm trên Oy)

\(\Rightarrow I\left(0;-\dfrac{3m}{4}\right)\)

Mặt khác trung điểm BC cũng thuộc Oy và IB=IC (do I là tâm đường tròn ngoại tiếp)

\(\Rightarrow\) I trùng trung điểm BC

\(\Rightarrow-\dfrac{3m}{4}=-\dfrac{m^2+3m}{2}\) \(\Rightarrow m\)

NV
13 tháng 12 2021

b.

Từ câu a ta thấy khoảng cách giữa 2 cực đại là:

\(\left|x_B-x_C\right|=2\sqrt{-\dfrac{m}{2}}=5\Rightarrow m=-\dfrac{25}{2}\)

23 tháng 4 2016

Đáp số : \(m=-\frac{1}{\sqrt[3]{3}};m=-\sqrt[3]{\left(2+\sqrt{3}\right)^2}\)

24 tháng 7 2019

28 tháng 3 2016

Ta có : \(y'=4x^3+4mx;y'=0\Leftrightarrow4x\left(x^2+m\right)=0\Leftrightarrow\begin{cases}x=0\\x=\pm\sqrt{-m}\end{cases}\) (m<0)

Gọi \(A\left(0;m^2+m\right);B\left(\sqrt{-m;}m\right);C\left(-\sqrt{-m};m\right)\) là các điểm cực trị

\(\overrightarrow{AB}=\left(\sqrt{-m},-m^2\right);\overrightarrow{AC}=\left(-\sqrt{-m},-m\right)\)

Tam giác ABC cân tại A nên góc 120 độ chính là góc A

\(\widehat{A}=120^0\Leftrightarrow\cos A=-\frac{1}{2}\Leftrightarrow\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\frac{1}{2}\)

                \(\Leftrightarrow\frac{-\sqrt{-m}.\sqrt{-m}+m^4}{m^4-m}=-\frac{1}{2}\)

                \(\Leftrightarrow\frac{m+m^4}{m^4-m}=-\frac{1}{2}\)

                \(\Leftrightarrow2m+2m^4=m-m^4\Leftrightarrow3m^4+m=0\)

                \(\Leftrightarrow\begin{cases}m=0\\m=-\frac{1}{\sqrt{3}}\end{cases}\) mà m=0 thì loại

Vậy \(m=-\frac{1}{\sqrt{3}}\) thỏa mãn bài toán

 

18 tháng 8 2020

Tại sao vectơ AC (- căn-m,-m)

6 tháng 4 2016

\(y=-x^4+2\left(m+1\right)x^2+m+1\left(C_m\right)\)

\(y'=-4x^2+4\left(m+1\right)x=-4x\left(x^2-m-1\right)\)

Xét \(y'=0\Leftrightarrow-4x\left(x^2-m-1\right)=0\) \(\Leftrightarrow\begin{cases}x=0\\x^2=m+1\left(1\right)\end{cases}\)

Hàm số có 3 điểm cực trị khi và chỉ khi phương trình \(y'=0\) có 3 nghiệm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 0 

\(\Leftrightarrow m+1>0\Leftrightarrow m>-1\) (*)

Với điều kiện (*) phương trình y' = 0 có 3 nghiệm phân biệt \(x,x=\pm\sqrt{m+1}\) và có 3 điểm cực trị của đồ thị \(C_m\) là \(A\left(0;m+1\right);B\left(-\sqrt{m+1;}-\left(m+1\right)^2+m+1;\right);C\left(\sqrt{m+1};-\left(m+1\right)^2+m+1\right)\)

3 điểm cực trị tạo thành 1 tam giác đều :

\(\Leftrightarrow AB=AC=CB\Leftrightarrow AB^2=AC^2=CB^2\) 

\(\Leftrightarrow\begin{cases}AB^2=AC^2\\AB^2=BC^2\end{cases}\)\(\Leftrightarrow\begin{cases}m+1+\left(m+1\right)^4=m+1+\left(m+1\right)^4\\m+1+\left(m+1\right)^4=4\left(m+1\right)\end{cases}\)

                              \(\Leftrightarrow m=\sqrt[3]{3}-1\)