Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Đáp án A.
Hàm số có y = x4 – x + 2 không là hàm số chẵn nên mệnh đề I sai.
Mệnh đề II, III, IV đúng
Chọn D
i) Đúng.
ii) Sai, ví dụ: Xét hàm số
Ta có f ' x = x 2 - 2 x + 1 .
Cho f ' ( x ) ⇔ x = 1 .
Khi đó phương trình f ' ( x ) = 0 có nghiệm x 0 = 1 nhưng đây là nghiệm kép nên không đổi dấu khi qua x 0 .
iii) Sai, vì: Thiếu điều kiện f ' ( x ) = 0 chỉ tại một số hữu hạn điểm.
Vậy có 1 mệnh đề đúng.
Đáp án là A
Theo điều đủ để hàm số có cực trị thì x 0 là điểm cực tiểu của hàm số.
Đáp án D.
Ta có: y’ = 3x2 – 6x + 3(m2 – 1)
Hàm số đạt cực tiểu tại x0 = 2 => y’(2) = 0 => m = ±1
Ta có: y’’ = 6x – 6 => y’’(2) = 12 > 0, m
Vậy hàm số đạt cực tiểu tại x0 = 2 khi m = ±1
Chọn C.
Đáp án A sai chẳng hạn xét hàm số f(x) = x 3 có f'(x) = 3 x 2 => f'(0) 0 nhưng hàm số không cực trị tại x = 0.
Đáp án B hiển nhiên sai vì ít nhất ta cần có f'(x) = 0 chứ không phải f'( x 0 ) < 0
Đáp án C hiển nhiên đúng.
Theo đáp án A thì D sai.