K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2018

Đáp án A

Phương pháp:

Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.

Cách giải:

*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và  f c 2

*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số  y = x 3

*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.

Chú ý khi giải:

HS thường nhầm lẫn:

- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.

- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.

7 tháng 2 2019

Đáp án là C 

I.Sai ví dụ hàm số y = x 3  đồng biến trên

(−¥; +¥) nhưng y' ³  0, "x Î (−¥; +¥

II.Đúng

III.Đúng

16 tháng 1 2018

Đáp án là C

Câu III sai vì thiếu dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên I

Câu IV sai vì có thể vô số điểm trên I xuất hiện rời rạc thì vẫn có thể nghịch biến trên khoảng I

20 tháng 12 2017

Đáp án A

10 tháng 11 2017

30 tháng 11 2018

Đáp án là B

13 tháng 5 2019

14 tháng 3 2018

2 tháng 7 2019

Đáp án D

Phương pháp: +) Khảo sát sự biến thiên của đồ thị hàm số.

+) Hàm số đạt cực trị tại điểm x = x 0 ⇔ y ' x 0 = 0 và x = x 0  được gọi là điểm cực trị.

+) Hàm số đạt cực trị tại điểm x = x 0 thì  y x 0 là giá trị cực trị.

Như vậy có 3 mệnh đề đúng.

Chú ý: Học sinh thường giá trị cực trị và

 điểm cực trị nên có thể chọn sai mệnh dề (2) đúng.

8 tháng 8 2018

Đáp án là D.

          Sai ở bước III (bảng biến thiên)