Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow-2}\frac{\sqrt{3x+10}-2-\left(x+2\right)}{x+2}=\lim\limits_{x\rightarrow-2}\frac{\frac{3\left(x+2\right)}{\sqrt{3x+10}+2}-\left(x+2\right)}{x+2}=\lim\limits_{x\rightarrow-2}\left(\frac{3}{\sqrt{3x+10}+2}-1\right)=-\frac{1}{4}\)
\(\Rightarrow\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)
\(\Rightarrow f\left(x\right)\) liên tục tại \(x=-2\)
Để hs có đạo hàm trước hết nó phải liên tục
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=1\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=2b+c+4\)
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^+}f\left(x\right)=f\left(x\right)\Rightarrow2b+c+4=1\Rightarrow2b+c=-3\)
Mặt khác ta có: \(f'\left(x\right)_{-\sqrt{5}\le x\le2}=\frac{-x}{\sqrt{5-x^2}}\Rightarrow\lim\limits_{x\rightarrow2^-}f'\left(x\right)=\frac{-2}{1}=-2\)
\(f'\left(x\right)_{x>2}=2x+b\Rightarrow\lim\limits_{x\rightarrow2^+}f'\left(x\right)=b+4\)
Để hàm số có đạo hàm tại \(x=2\)
\(\Rightarrow\left\{{}\begin{matrix}2b+c=-3\\b+4=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-6\\c=9\end{matrix}\right.\)
Nhìn thấy đạo hàm bằng định nghĩa là thấy ớn, dài dữ dội
- Khi \(x>1\) \(\Rightarrow f\left(x\right)=\frac{4x-4}{x+1}\)
\(\Delta x=x-x_0\) \(\Rightarrow\Delta y=\frac{4\Delta x+4x_0-4}{x_0+\Delta x+1}-\frac{4x_0-4}{x_0+1}=\frac{8\Delta x}{\left(x_0+1\right)\left(x_0+1+\Delta x\right)}\)
\(\Rightarrow f'\left(x_0\right)=\lim\limits_{\Delta x\rightarrow0}\frac{8\Delta x}{\Delta x\left(x_0+1\right)\left(x_0+1+\Delta x\right)}=\frac{8}{\left(x_0+1\right)^2}\)
- Khi \(x< 1\Rightarrow f\left(x\right)=2x-2\)
\(\Delta x\) là số gia của \(x_0< 1\)
\(\Rightarrow\Delta y=2\left(x_0+\Delta x\right)-2-\left(2x_0-2\right)=2\Delta x\)
\(\Rightarrow f'\left(x_0\right)=\lim\limits_{\Delta x\rightarrow0}\frac{2\Delta x}{\Delta x}=2\)
- Khi \(x\rightarrow1^+\Rightarrow\Delta y\rightarrow2\left(1+\Delta x\right)-2\rightarrow2\Delta x\)
\(\lim\limits_{x\rightarrow1^+}f'\left(x\right)=\lim\limits_{\Delta x\rightarrow0}\frac{2\Delta x}{\Delta x}=2\)
\(\lim\limits_{x\rightarrow1^-}f'\left(x\right)=\lim\limits_{x\rightarrow1^-}\frac{8}{\left(1+1\right)^2}=2\)
\(\Rightarrow f'\left(1\right)=2\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\sqrt{2x-4}+3\)
\(=\sqrt{2\cdot2-4}+3=3\)
\(f\left(2\right)=\sqrt{2\cdot2-4}+3=0+3=3\)
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{x+2}{x^2-2mx+m^2+2}\)
\(=\dfrac{2+2}{2^2-2m\cdot2+m^2+2}=\dfrac{4}{m^2-4m+6}\)
Để hàm số f(x) liên tục trên R thì f(x) liên tục tại x=2
=>\(\dfrac{4}{m^2-4m+6}=3\)
=>\(4=3\left(m^2-4m+6\right)\)
=>\(3m^2-12m+18-4=0\)
=>\(3m^2-12m+14=0\)
\(\Leftrightarrow3m^2-12m+12+2=0\)
=>\(3\left(m-2\right)^2+2=0\)(vô lý)
=>\(m\in\varnothing\)