K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

Chọn C.

Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.

30 tháng 4 2018

Chọn đáp án B

Phương pháp

Dựa vào đồ thị hàm số xác định các khoảng đơn điệu, các điểm cực trị và GTLN, GTNN của hàm số.

Cách giải

Dựa vào đồ thị hàm số ta thấy hàm số đã cho

+) Đồng biến trên (-1;0) và (1;+∞), nghịch biến trên (-∞;-1) và (0;1).

+) Hàm số có 3 điểm cực trị.

+) Hàm số không có GTLN.

Do đó các mệnh đề (I), (III) đúng.

17 tháng 8 2017

Đáp án D

Hàm số  y = f ( x )  đạt cực tiểu tại x 0 = 0  

Hàm số  y = f ( x )  có ba điểm cực trị.

Phương trình  f ( x ) = 0  có 4 nghiệm phân biệt

Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]

28 tháng 12 2017

Đáp án B

7 tháng 3 2019

Đáp án B

Dựa vào bảng biến thiên ta thấy:

+) lim x → − ∞ y = − 1 ⇒  đồ thị hàm số có TCN   y = − 1

+) lim x → 1 − y = − ∞ ⇒  đồ thị hàm số có TCĐ   x = 1

+) Hàm số không có giá trị lớn nhất vì   lim x → + ∞ y = + ∞

+) Hàm số không có giá trị nhỏ nhất vì   lim x → 1 − y = − ∞

Suy ra không có mệnh đề nào đúng

26 tháng 9 2017

Đáp án là  B.

Từ đồ thị của hàm số y , = f ( x )  ta có bảng biến thiên của hàm số y = f ( x )  như hình vẽ:

Từ bảng biến thiên ta có:  M = m a x { f ( - 1 ) ; f ( 1 ) ; f ( 2 ) }

4 tháng 4 2018

Đáp án A

Có 2 mệnh đề sai là mệnh đề (3) và mệnh đề (4).

Mệnh đề (3) sai vì nếu hai cực trị của hàm số cùng dấu thì đồ thị hàm số chỉ cắt trục Ox tại một điểm.

Mệnh đề (4) sai lý do tương tự mệnh đề (3).

23 tháng 9 2017

Đáp án A.

Mệnh đề 3 sai ví dụ hàm số y=|x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.

 

Mệnh đề 4 đúng vì nếu hàm số y=f(x) có đạo hàm trên [a;b] thì hàm số liên tục trên [a;b] do đó hàm số có nguyên hàm trên [a;b]

9 tháng 9 2017

15 tháng 12 2017