Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}\) hay \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) em?
\(\dfrac{f\left(x\right)-5}{x-3}\) thì giới hạn bên dưới ko phải dạng vô định, kết quả là vô cực
\(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}\) hữu hạn \(\Rightarrow f\left(3\right)=80\)
Sử dụng hẳng đẳng thức: \(a-b=\dfrac{a^4-b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{f\left(x\right)-80}{\left[\sqrt[4]{f\left(x\right)+1}+3\right]\left[\sqrt[]{f\left(x\right)+1}+9\right]}}{\left(x-3\right)\left(2x-5\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}.\dfrac{1}{\left[\sqrt[4]{f\left(x\right)+1}+3\right]\left[\sqrt[]{f\left(x\right)+1}+9\right]\left(2x-5\right)}\)
\(=5.\dfrac{1}{\left(\sqrt[4]{80+1}+3\right)\left(\sqrt[]{80+1}+9\right)\left(2.3-5\right)}\)
a: \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^+}x^2-3=3^2-3=6\)
\(\lim\limits_{x\rightarrow3^-}f\left(x\right)=\lim\limits_{x\rightarrow3^-}x+3=3+3=6\)
b: Vì \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)=6\)
nên hàm số tồn tại lim khi x=3
=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=6\)
Do \(\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5\) hữu hạn nên \(2f\left(x\right)+1=0\) phải có nghiệm \(x=-1\)
\(\Leftrightarrow2f\left(-1\right)=-1\Leftrightarrow f\left(-1\right)=-\dfrac{1}{2}\)
Đoạn dưới tự hiểu là \(\lim\limits_{x\rightarrow-1}\) (vì kí tự lim rất rắc rối)
\(I=\dfrac{\left[4f\left(x\right)+3\right]\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}-2\right]+2\left[4f\left(x\right)+3\right]-2}{x^2-1}\)
\(=\dfrac{\left[4f\left(x\right)+3\right]\left[4f^2\left(x\right)+2f\left(x\right)\right]}{\left(x+1\right)\left(x-1\right)\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}+2\right]}+\dfrac{4\left[2f\left(x\right)+1\right]}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{f\left(x\right).\left[4f\left(x\right)+3\right]}{x-1}+\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{4}{x-1}\)
\(=5.\dfrac{f\left(-1\right).\left[4f\left(-1\right)+3\right]}{-2}+5.\dfrac{4}{-2}=\dfrac{5.\left(-\dfrac{1}{2}\right)\left(-2+3\right)}{-2}+5.\dfrac{4}{-2}=...\)
Không phải dạng, nó chỉ là ứng dụng kiến thức cơ bản về giới hạn của hàm thôi
Mấy câu này bạn cần giải theo kiểu trắc nghiệm hay tự luận nhỉ?
Với FX580 hình như tính được luôn
Còn với mọi dòng máy thì:
a. Nhập \(\dfrac{X^2+2X-3}{2X^2-X-1}\) và CALC với \(x=1,000000001\), máy cho kết quả \(\dfrac{4}{3}\)
b. Nhập \(\dfrac{\left|1-3X\right|}{3-X}\) và CALC với \(2,99999999\) (\(x\rightarrow3^-\) nên CALC với giá trị nhỏ hơn 3 1 chút xíu, nếu \(3^+\) thì sẽ CALC với giá trị lớn hơn 3 chút xíu)
Máy cho kết quả rất lớn, dấu dương, hiểu là \(+\infty\)
Em kiểm tra lại đề, chỗ \(f\left(x\right)-32\) kia có vẻ sai, vì như thế thì biểu thức đã cho ko phải dạng vô định
Chọn F(x)=5x-23
\(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5x-23-2}{x-5}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{5x-25}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5\left(x-5\right)}{x-5}=5\)
=>f(x)=5x-23 thỏa mãn yêu cầu đề bài
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\cdot f\left(x\right)+10}+\sqrt{f^3\left(x\right)+1}-7}{x^2-25}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\left(5x-23\right)+10}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}-4+\sqrt{\left(5x-23\right)^3+1}-3}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15x-59-16}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3+1-9}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3-8}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23-2\right)\left[\left(5x-23\right)^2+2\left(5x-23\right)+4\right]}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15}{\sqrt{15x-59}+4}+\dfrac{5\cdot\left(25x^2-230x+529+10x-46+4\right)}{\sqrt{\left(5x-23\right)^3+1}+3}}{x+5}\)
\(=\dfrac{\dfrac{15}{\sqrt{15\cdot5-59}+4}+\dfrac{5\left(25\cdot5^2-220\cdot5+487\right)}{\sqrt{\left(5\cdot5-23\right)^3+1}+3}}{5+5}\)
\(=\dfrac{\dfrac{15}{8}+\dfrac{5\cdot12}{6}}{10}=\dfrac{19}{16}\)
Do \(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}\) hữu hạn nên \(f\left(x\right)-2=0\) có nghiệm \(x=5\)
\(\Rightarrow f\left(5\right)=2\)
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3f\left(x\right)+10}-4+\sqrt{f^3\left(x\right)+1}-3}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{3\left[f\left(x\right)-2\right]}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{\left[f\left(x\right)-2\right]\left[f^2\left(x\right)+2f\left(x\right)+4\right]}{\sqrt{f^3\left(x\right)+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{f\left(x\right)-2}{x-5}.\dfrac{3}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{f\left(x\right)-2}{x-5}.\dfrac{f^2\left(x\right)+2f\left(x\right)+4}{\sqrt{f^3\left(x\right)+1}+3}}{x+5}\)
\(=\dfrac{5.\dfrac{3}{\sqrt{3.2+10}+4}+5.\dfrac{2^2+2.2+4}{\sqrt{2^3+1}+3}}{5+5}=\)
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{x-1}\) hữu hạn nên \(f\left(x\right)-16=0\) có nghiệm \(x=1\)
\(\Rightarrow f\left(1\right)=16\)
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{x-1}.\dfrac{1}{\sqrt{2f\left(x\right)+4}+6}=24.\dfrac{1}{\sqrt{2.16+4}+6}=2\)
Do \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{x-3}\) hữu hạn \(\Rightarrow f\left(x\right)-2=0\) có nghiệm \(x=3\)
Hay \(f\left(3\right)-2=0\Rightarrow f\left(3\right)=2\)
\(\Rightarrow I=\lim\limits_{x\rightarrow3}\left(\dfrac{f\left(x\right)-2}{x-3}\right).\dfrac{1}{\sqrt{5f\left(x\right)+6}+1}=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.f\left(3\right)+6}+1}\)
\(=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.2+6}+1}=\dfrac{1}{20}\)
em cảm ơn nhìu ạ<3