K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Đáp án C.

Ta có f 2 - f 1 = ∫ 1 2 f ' x d x ≥ ∫ 1 2 x + 1 x d x = x 2 2 + ln x 1 2 = 2 + ln 2 - 1 2 = 3 2 + ln 2 .  

Mặt khác f 1 = 1  suy ra f 2 ≥ f 1 + 3 2 + ln 2 = 1 + 3 2 + ln 2 = 5 2 + ln 2 .

19 tháng 3 2018

Chọn A

18 tháng 9 2019

20 tháng 4 2018

Đáp án là C

14 tháng 4 2017

Đáp án D

17 tháng 1 2019

Đáp án C

Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức  f ' x f x = 2 - 2 x *  

Lấy nguyên hàm 2 vế (*), ta được  ∫ d f x f x = ∫ 2 - 2 x d x

⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C  

Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó  f x = e - x 2 + 2 x  

Xét hàm số  f x = e - x 2 + 2 x  trên - ∞ ; + ∞ , có  f ' x = - 2 x + 2 = 0 ⇔ x = 1

Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0  

Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt  ⇔ 0 < m < e .

31 tháng 12 2017

Đáp án D

23 tháng 1 2017

Đáp án A

2 tháng 8 2019

Chọn A

18 tháng 7 2019

Đáp án A