K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

Chọn D

* Tập xác định 

* Ta có 

suy ra hàm số đã cho đồng biến trên đoạn [0;3].

Do đó 

* Theo yêu cầu bài toán ta có: 

10 tháng 4 2019

Đạo hàm f'(x) =  m 2 - m + 1 ( x + 1 ) 2 > 0,  ∀ x   ∈   [ 0 ; 1 ]  

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

6 tháng 2 2022

f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].

Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.

Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.

6 tháng 2 2022

sai

8 tháng 4 2019

14 tháng 11 2017

+ Đạo hàm f'(x) =  2 - m x 2 ( x + 1 ) x ( x + 1 )

f'(x) = 0  ⇒ x   =   2 m     ↔   x   =   m 2 4   ∈ [   0 ; 4 ] ,  ∀ m > 1

+ Lập bảng biến thiên, ta kết luận được  

m a x [ 0 ; 4 ]   f ( x )   =   f ( 4 m 2 )   =   m 2   + 4

+ Vậy ta cần có  m 2 + 4   <   3  

↔   m < 5   →   m > 1     m   ∈ ( 1 ; 5 )

Chọn C.

10 tháng 11 2018

Đáp án C

23 tháng 2 2018

Chọn D

Ta có 

Suy ra, 

13 tháng 1 2018

13 tháng 9 2019

Chọn A

ĐK:  x ≥ 0

Xét trên  0 ; 3 ta có  f ' x = 1 - 1 2 x = 0

⇔ x = 1 4 ∈ 0 ; 3

Ta có:

Suy ra  M = m a x y 0 ; 3 = f 3 = 3 - 3

m = m i n y 0 ; 3 = f 1 4 = - 1 4

Nên  M + 2 m ≈ 0 , 768