K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a).f(b) > 0 thì phương trình f(x) = 0 có thể có nghiệm hoặc vô nghiệm trong khoảng (a; b)

Ví dụ minh hoạ :

- f ( x )   =   x 2   −   1 liên tục trên đoạn [−2;2], f(−2).f(2) = 9 > 0

Phương trình x 2   –   1   =   0 có nghiệm x = 1 hoặc x = -1 trong khoảng (-2; 2)

- f ( x )   =   x 2   +   1 liên tục trên đoạn [-1; 1] và f(−1).f(1) = 4 > 0. Còn phương trình x 2   +   1   =   0 lại vô nghiệm trong khoảng (-1; 1)

Tham khảo:

b: 

11 tháng 11 2017

Nếu hàm số y = f(x) không liên tục trên đoạn [a; b] nhưng f(a).f(b) < 0 thì phươngtrình f(x) = 0 có thể có nghiệm hoặc vô nghiệm trong khoảng (a; b)

Minh hoạ hình hoạ (H.8):

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

NV
16 tháng 4 2022

Đặt \(f\left(x\right)=x^4+3x^3+x-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(-1\right)=-4< 0\) ; \(f\left(3\right)=164>0\)

\(\Rightarrow f\left(-1\right).f\left(3\right)< 0\Rightarrow f\left(x\right)\) có nghiệm trong khoảng (-1;3)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(f'\left(x\right)=x^2-2x-3\)

\(f'\left(x\right)\le0\\ \Rightarrow x^2-2x-3\le0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)\le0\\ \Leftrightarrow-1\le x\le3\)

3 tháng 1 2019

Chọn C.

- Hàm số g(x) = f(x) - x xác định và liên tục trên đoạn [a ; b].

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Suy ra: phương trình f(x) – x = 0 luôn có nghiệm trên khoảng (a, b).

7 tháng 9 2018

Chọn C.

Vì: f’(x) = 15(x + 1)2 + 4 ;

f”(x) = 30(x + 1) f”(x) = 0 x = -1.

4 tháng 8 2018

Đáp án C

Ta có : f ' ( x ) = 15 ( x + 1 ) 2 + 4  ;

  f ' ' ( x ) = 30 ( x + 1 ) ⇒ f ' ' ( x ) = 0 ⇔ 30 ( x + 1 ) = 0 ⇔ x = - 1 .

21 tháng 10 2023

2: ĐKXĐ: x<>1

\(f'\left(x\right)=\dfrac{\left(x^2-3x+3\right)'\left(x-1\right)-\left(x^2-3x+3\right)\left(x-1\right)'}{\left(x-1\right)^2}\)

\(=\dfrac{\left(2x-3\right)\left(x-1\right)-\left(x^2-3x+3\right)}{\left(x-1\right)^2}\)

\(=\dfrac{2x^2-5x+3-x^2+3x-3}{\left(x-1\right)^2}=\dfrac{x^2-2x}{\left(x-1\right)^2}\)

f'(x)=0

=>x^2-2x=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

1:

\(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}\cdot x^2+8x-1\)

=>\(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2-2\sqrt{2}\cdot2x+8=x^2-4\sqrt{2}\cdot x+8=\left(x-2\sqrt{2}\right)^2\)

f'(x)=0

=>\(\left(x-2\sqrt{2}\right)^2=0\)

=>\(x-2\sqrt{2}=0\)

=>\(x=2\sqrt{2}\)