K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

18 tháng 11 2017

8 tháng 9 2018

2 tháng 4 2018

9 tháng 12 2017

Chọn đáp án B.

21 tháng 5 2018

Đặt t =f(x) ta có f[f(x)]=1→f(t)=1

Dựa vào sự tương giao của đồ thị hàm số y=f(x) và đường thẳng y=1 ta thấy phương trình f(t)=1 có 3 nghiệm t =a ϵ (0 ;2),t =c ϵ(2 ;+∞) Dựa vào đồ thị ta lại có:

Phương trình t =a→f(x) =a và phương trình t =f(x) =b có 3 nghiệm phâ biệt.

Phương trình f =f(x) =c có một nghiệm duy nhất.

Vậy phương trình đã cho có 7 nghiệm .

Chọn đáp án B.

18 tháng 3 2019

Đồ thị hàm số |f(x)| được suy ra từ đồ thị hàm số f(x) bằng cách:

Giữ nguyên phần đồ thị hàm số f(x) phía trên trục hoành;

Lấy đối xứng qua trục hoành phần đồ thị phía dưới trục hoành của hàm số f(x)

Quan sát đồ thị suy ra phương trình |f(x)=m có hai nghiệm thực phân biệt

Chọn đáp án D.

20 tháng 1 2017

Đáp án B

Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.

Cách giải: 

Xét giao điểm của đồ  thị  hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ  thị  cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).

Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy  => phương trình g(x) = 0 không có nghiệm

24 tháng 10 2019

Ta có 

Quan sát đồ thị có 

Đặt  phương trình trở thành:

Khi đó

Phương trình này có 3 nghiệm phân biệt

Tổng các phần tử củaS bằng 

Chọn đáp án C.