Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.
Chọn A
TXĐ: .
Tọa độ giao điểm của với trục tung: .
Vậy đồ thị cắt trục tung tại điểm .
.
Phương trình tiếp tuyến của tại :
Chọn B
Tọa độ giao điểm của đồ thị hàm số với trục tung là nghiệm của hệ
Ta có
Suy ra
Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị hàm số với trục tung là .
Cho x = 0 ta được y = 1.
Do đó, giao điểm của (C) với trục tung là A(0; 1).
y ' = 3 x 2 + 6 x + 3 ⇔ y ' ( 0 ) = 3
Phương trình tiếp tuyến tại điểm A là:
y= 3(x - 0) + 1 hay y = 3x + 1
Chọn B
Chọn D.
Gọi M là giao điểm của (C) với trục tung => M(0;-2)
Ta có:
Phương trình tiếp tuyến tại điểm M:
Gọi là giao điểm của đồ thị hàm số (C) với trục Oy.
Khi đó ta có:
Ta có:
Vậy phương trình tiếp tuyến của đồ thị hàm số (C) tại điểm là:
Chọn C
Chọn B
Giao điểm của đồ thị với trục tung là
Phương trình tiếp tuyến của đồ thị tại là
Đáp án B