K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

a) Đúng

b) Đúng

c) Sai

d) Đúng

17 tháng 2 2021

TL: A, B, D: Đúng; C: Sai

26 tháng 12 2017

a) Gọi Δ1, Δ2, Δ3 lần lượt là giá của ba vectơ abc

+ Vectơ a cùng phương với vectơ c ⇒ Δ1 //≡ Δ3

+ Vectơ b cùng phương với vectơ c ⇒ Δ2 //≡ Δ3

⇒ Δ1 //≡ Δ2

⇒ Vectơ a cùng phương với b (theo định nghĩa).

b) ab cùng ngược hướng với c

⇒ ab đều cùng phương với c

⇒ a và b cùng phương.

⇒ a và b chỉ có thể cùng hướng hoặc ngược hướng.

Mà a và b đều ngược hướng với c nên a và b cùng hướng.

24 tháng 9 2023

Tham khảo:

a) Đúng vì vectơ \(\overrightarrow 0 \) cùng hướng với mọi vectơ.

b) Sai. Chẳng hạn: Hai vecto không cùng hướng nhưng cũng không ngược hướng (do chúng không cùng phương).

 

c) Đúng.

 \(\overrightarrow a \) và \(\overrightarrow b \) đều cùng phương với \(\overrightarrow c \) thì a // c và b // c do đó a // b tức là \(\overrightarrow a \)và \(\overrightarrow b \) cùng phương.

d) Đúng.

\(\overrightarrow a \) và \(\overrightarrow b \) đều cùng hướng với \(\overrightarrow c \) thì \(\overrightarrow a \)và \(\overrightarrow b \) cùng phương , cùng chiều đo đó cùng hướng.

9 tháng 10 2019

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Câu 5:

D. Các vector \(\overrightarrow{AB}, \overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CA}, \overrightarrow{BC}, \overrightarrow{CB}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Câu 6: B

Câu 7: A

31 tháng 3 2017

Giải bài 2 trang 27 sgk Hình học 10 | Để học tốt Toán 10

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Khẳng định trên sai. Vì khi 3 điểm phân biệt A, B, C thẳng hàng thì hai vectơ  \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) cùng phương nhưng chưa chắc là cùng hướng. 

Chẳng hạn:

Khi nằm giữa B và C thì hướng của vectơ  \(\overrightarrow {AB} \) là từ phải sang trái, còn hướng của vectơ  \(\overrightarrow {AC} \)là từ trái sang phải nên hai vectơ này là ngược hướng.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)      

+) Vectơ \(\overrightarrow a \) cùng phương với vectơ \(\overrightarrow c \) nên giá của vectơ \(\overrightarrow a \) song song với giá của vectơ \(\overrightarrow c \)

+) Vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow c \) nên giá của vectơ \(\overrightarrow b \) song song với giá của vectơ \(\overrightarrow c \)

Suy ra giá của vectơ \(\overrightarrow a \) và vectơ \(\overrightarrow b \) song song với nhau nên \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương

Vậy khẳng định trên đúng

b)       Giả sử vectơ \(\overrightarrow c \) có hướng từ sang B

+) Vectơ \(\overrightarrow a \) ngược hướng với vectơ \(\overrightarrow c \) nên giá của vectơ \(\overrightarrow a \) song song với giá của vectơ \(\overrightarrow c \) và có hướng từ sang A

+) Vectơ \(\overrightarrow b \) ngược hướng với vectơ \(\overrightarrow c \) nên giá của vectơ \(\overrightarrow b \) song song với giá của vectơ \(\overrightarrow c \) và có hướng từ sang A

Suy ra, hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng

Vậy khẳng định trên đúng

14 tháng 7 2019

Khẳng định trên sai, chúng chỉ cùng phương, không cùng hướng.

3 tháng 9 2021

đúng vì hai giá của hai vecto vẫn trùng nhau