Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{BOA}=90^0-30^0-30^0=30^0\)
\(\Leftrightarrow\widehat{BOA}=\widehat{xOA}\)
hay OA là tia phân giác của góc BOx
b: \(\widehat{COy}=\widehat{AOy}=60^0\)
\(\Leftrightarrow\widehat{COB}=\widehat{COy}+\widehat{yOB}=60^0+30^0=90^0\)
hay OB\(\perp\)OC
a,Do \(\widehat{yOB}\)<\(\widehat{yOx}\)và tia OB nằm trong góc \(\widehat{xOy}\)
\(\Rightarrow\)Tia OB nằm giữa hai tia Ox,Oy
\(\Rightarrow\)\(\Rightarrow\widehat{yOB}\)+\(\widehat{BOx}\)=\(\widehat{xOy}\)
\(\Rightarrow30^o+\widehat{BOx}\)\(=90^o\)
\(\Rightarrow\widehat{BOx}\)\(=60^o\)
Do \(\widehat{xOA}\)<\(\widehat{xOB}\)và hai tia OA,OB cùng nằm trong \(\widehat{xOy}\)
\(\Rightarrow\widehat{xOA}+\widehat{AOB}=\widehat{xOB}\)
\(\Rightarrow30^o+\widehat{AOB}=60^o\)
\(\Rightarrow\widehat{AOB}=30^o\)
Do \(\widehat{xOA}=\widehat{AOB}\)\(=\frac{\widehat{BOx}}{2}=\frac{60^o}{2}=30^o\)
\(\Rightarrow\)Tia OA là tia phân giác của \(\widehat{xOB}\)
b, mk chịu
Ta có: a O b ^ = 30°= x O a ^ suy ra
Oa là phân giác của b O x ^ .
Lại có a O y ^ = 60°, Oy là phân
giác của a O c ^ nên:
y O c ^ = a O y ^ = 60°.
Khi. đó:
b O c ^ = b O y ^ + y O c ^ = 90°.
Vì xOy là góc vuông nên có số đo là 900
BOy + BOA + AOx = 900
BOA = 900 - ( BOy + BOx)
BOA = 900 - 600
BOA = 300
Vì góc BOA = AOx nên OA là tia phân giác của góc BOx
a) Vì tia OB nằn giữa 2 tia Ox và Oy => góc yOB + BOx = 90o
=> BOx = 90o - yOB = 90o - 30o = 60o
Trên nửa mp bờ tia Ox: góc xOA < xOB (30o < 60o)
=> tia OA nằm giữa 2 tia Ox và OB
=> BOA + AOx = BOx
=> góc BOA = BOx - AOx = 60o - 30o = 30o
Vậy BOA = AOx và OA nằm giữa 2 tia OB và Ox => OA là tia p/g của góc xOB
b) Góc xOA + AOy = xOy
=> AOy = xOy - xOA = 90o - 30o = 60o
Oy là p/g của góc AOC => góc AOC = 2 . góc AOy = 120 o
Trên nửa mp bờ tia OA: góc AOB < góc AOC
=> tia OB nằm giữa 2 tia OA và OC
=> AOB + BOC= AOC
=> BOC = AOC - AOB = 120o - 30o = 90o
=> OB vuông góc với OC