K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

a)  Tứ giác  \(AEHF\)có:   \(\widehat{HEA}=\widehat{EAF}=\widehat{AFH\:}=90^0\)

\(\Rightarrow\)\(AEHF\) là hình chữ nhật

b)  Xét  \(\Delta BEH\)và   \(\Delta AHC\)ta có:

      \(\widehat{BEH}=\widehat{AHC}=90^0\)

     \(\widehat{EBH}=\widehat{HAC}\) (cùng phụ với góc HAB)

suy ra:   \(\Delta BEH~\Delta AHC\)

\(\Rightarrow\)\(\frac{BE}{AH}=\frac{EH}{HC}\)

\(\Rightarrow\)\(BE.HC=AH.EH\) (đpcm)

a: Xét ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AB

nên \(AK\cdot AC=AH^2\left(1\right)\)

Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền AC

nên \(HB\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AC=HB\cdot HC\)

16 tháng 9 2017

Qua H kẻ đường thẳng song song với EC cắt AB tại F. Sử dụng định lý đường trung bình của tam giác chứng minh được F là trung điểm của BE và