K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

ta có: 3a+3b=5a-5b

3a+5a=3b-5b

8a=-4b

8:-4=a/b

=> a/b = -2

hên sui hà

27 tháng 4 2016

3(a+b)=5(a-b)

3a + 3b = 5a - 5b

3a + 3b + 5b = 5a

3b + 5b = 5a - 3a

8b = 2a

4b = a (1)

Từ (1) ta có:

a : b = 4

=> thương của a và b bằng 4

9 tháng 8 2016

Vì 3 (a + b) = 5 (a - b) nên 3 (a + b) và 5 (a - b) là bội chung của 3 và 5.

=> Giá trị nhỏ nhất của 2 tích 3 (a + b) và 5 (a - b) sẽ là 15.

     3 (a + b) = 15

=> a + b      = 15 : 3

=> a + b      = 5               (1)

     5 (a - b) = 15

=> a - b      = 15 : 5

=> a - b      = 3                (2)

Từ (1) và (2) => a = 4 và b = 1

AH
Akai Haruma
Giáo viên
30 tháng 10

Lời giải:

$5(a+b)=7(a+b)$

$\Rightarrow 7(a+b)-5(a+b)=0$

$\Rightarrow 2(a+b)=0$

$\Rightarrow a+b=0$

$\Rightarrow a=-b$

Thương của $a$ và $b$: $a:b=(-b):b=-1$

16 tháng 4 2021

ta có : 803 là số lẻ 

        => ( 20a + 7b + 3 )( 20^a + 20a + b ) là số lẻ 

        => 20a + 7b + 3 và 20^a + 20a + b là số lẻ 

TH1 : nếu a khác 0 

=> 20^a + 20a là là số chẵn 

mà 20^a + 20a + b là số lẻ ( theo trên )

=> b lẻ

=> 20b + 3 chẵn

=> 20a + 7b + 3 chẵn ( loại )

TH2 : a = 0

=> (7b+3)(b+1) = 803 = 1. 803 = 11.73

vì b thuộc N

=> 7b + 3 > b+1

do đó

7b + 3 = 803 và b +1 = 1 => loại

hoặc 7b+3 = 73 và b +1 = 11 => b = 40 

vậy a = 0 và b = 40

15 tháng 1

xl mik hỏi ngu

 

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

a: Gọi số cần tìm có dạng là \(\overline{abc}\)

Vì \(\overline{abc}⋮18\) nên a+b+c=18

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{18}{6}=3\)

Do đó: a=3; b=6; c=9

Vậy: Số cần tìm là 936; 396

b: \(\Leftrightarrow\left(a^2-2\right)\left(a^2-5\right)< 0\)

\(\Rightarrow2< a^2< 5\)

\(\Leftrightarrow a^2=4\)

hay \(a\in\left\{2;-2\right\}\)

 

27 tháng 10 2016

ồ a khác b

28

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0