Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 3 (a + b) = 5 (a - b) nên 3 (a + b) và 5 (a - b) là bội chung của 3 và 5.
=> Giá trị nhỏ nhất của 2 tích 3 (a + b) và 5 (a - b) sẽ là 15.
3 (a + b) = 15
=> a + b = 15 : 3
=> a + b = 5 (1)
5 (a - b) = 15
=> a - b = 15 : 5
=> a - b = 3 (2)
Từ (1) và (2) => a = 4 và b = 1
Lời giải:
$5(a+b)=7(a+b)$
$\Rightarrow 7(a+b)-5(a+b)=0$
$\Rightarrow 2(a+b)=0$
$\Rightarrow a+b=0$
$\Rightarrow a=-b$
Thương của $a$ và $b$: $a:b=(-b):b=-1$
ta có : 803 là số lẻ
=> ( 20a + 7b + 3 )( 20^a + 20a + b ) là số lẻ
=> 20a + 7b + 3 và 20^a + 20a + b là số lẻ
TH1 : nếu a khác 0
=> 20^a + 20a là là số chẵn
mà 20^a + 20a + b là số lẻ ( theo trên )
=> b lẻ
=> 20b + 3 chẵn
=> 20a + 7b + 3 chẵn ( loại )
TH2 : a = 0
=> (7b+3)(b+1) = 803 = 1. 803 = 11.73
vì b thuộc N
=> 7b + 3 > b+1
do đó
7b + 3 = 803 và b +1 = 1 => loại
hoặc 7b+3 = 73 và b +1 = 11 => b = 40
vậy a = 0 và b = 40
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
a: Gọi số cần tìm có dạng là \(\overline{abc}\)
Vì \(\overline{abc}⋮18\) nên a+b+c=18
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{18}{6}=3\)
Do đó: a=3; b=6; c=9
Vậy: Số cần tìm là 936; 396
b: \(\Leftrightarrow\left(a^2-2\right)\left(a^2-5\right)< 0\)
\(\Rightarrow2< a^2< 5\)
\(\Leftrightarrow a^2=4\)
hay \(a\in\left\{2;-2\right\}\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
ta có: 3a+3b=5a-5b
3a+5a=3b-5b
8a=-4b
8:-4=a/b
=> a/b = -2
hên sui hà
3(a+b)=5(a-b)
3a + 3b = 5a - 5b
3a + 3b + 5b = 5a
3b + 5b = 5a - 3a
8b = 2a
4b = a (1)
Từ (1) ta có:
a : b = 4
=> thương của a và b bằng 4