K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= ( x2 + 4xy + 4y2 + 3x + 6y + 9/4 ) + ( y2 + 2y + 1 ) + 91/4

= [ ( x + 2y )2 + 2( x + 2y ).3/2 + (3/2)2 ] + ( y + 1 )2 + 91/4

= ( x + 2y + 3/2 )2 + ( y + 1 )2 + 91/4\(\ge\)91/4

Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+2y+\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy minA = 91/4 <=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= (x2 + 4xy + 4y2) + (3x + 6y) + 9/4 + (y2 + 2y + 1) + \(\frac{91}{4}\)

\(\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)

\(\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy Min A = 91/4 <=> x = 1/2 ; y = -1

20 tháng 12 2020
Bạn chơi ff ko 😀😀😀
20 tháng 12 2020

A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)

  = (x+2y+3/2)2 + (y+5/2)2 + 15

=> A min = 15

Dấu "=" xảy ra khi y=-5/2 ; x=7/2

19 tháng 9 2020

a) Đặt \(A=x^2-2x+1\)

    Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)

     Vì \(\left(x-1\right)^2\ge0\forall x\)

    \(\Rightarrow A_{min}=0\)

    Dấu "=" xảy ra khi: \(x-1=0\)

                            \(\Leftrightarrow x=1\)

Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)

19 tháng 9 2020

b) Ta có: \(M=x^2-3x+10\)

        \(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)

        \(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)

    Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)

     \(\Rightarrow\)\(M_{min}=\frac{31}{4}\)

    Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)

                            \(\Leftrightarrow x=\frac{3}{2}\)

Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)

7 tháng 11 2021

Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

7 tháng 11 2021

ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)

\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)

\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)

Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)

do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)

Dấu "=" xảy ra khi x-2y+1=0 và y+1=0

ta có:

y+1=0=>y=0-1=>y=-1

thay y=-1 và x-2y+1=0

=>x-2.(-1)+1=0

=>x+2+1=0

=>x+2=-1

=>x=-1-2

=>x=-3

vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1

15 tháng 5 2018

d)

\(A=x^2-4x+2019=x^2-4x+4+2015=\left(x-2\right)^2+2015\ge2015\)

MinA = 2015 khi x = 2

15 tháng 5 2018

b)

Ta có: 2x + y = 5 => y = 5 - 2x

Thay vào ta được:

\(P=x^2+y^2+4xy=x^2+\left(5-2x\right)^2+4x\left(5-2x\right)\)

\(P=x^2+25-20x+4x^2+20x-8x^2\)

\(P=-3x^2+25\le25\)

Suy ra: \(Max_P=25\) khi x = 0 và y = 5

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

23 tháng 4 2016

\(P=\left(x^2+2xy+y^2\right)-4x-4y+4+\left(4y^2-4y+1\right)+2010\)

     \(=\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2010\)

\(P=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\)  với mọi  \(x,y\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\left(x+y-2\right)^2=0\)  và  \(\left(2y-1\right)^2=0\)

                              \(\Leftrightarrow\)  \(x+y-2=0\)  và  \(2y-1=0\)

                              \(\Leftrightarrow\)  \(x=2-y\)  và  \(y=\frac{1}{2}\)

                              \(\Leftrightarrow\)  \(x=\frac{3}{2}\)  và  \(y=\frac{1}{2}\)

Vậy,  \(P_{min}=2010\)  \(\Leftrightarrow\)   \(x=\frac{3}{2};\)  và  \(y=\frac{1}{2}\)