K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gọi \(M,N\) là vị trí của hai vật thể sau thời gian t.

Khi đó \(\overrightarrow {AM}  = t.\overrightarrow {{v_A}}  = (t;2t);\overrightarrow {BN}  = t.\overrightarrow {{v_B}}  = (t; - 4t)\)

\( \Rightarrow \)Sau thời gian t, vị trí của hai vật thể là \(M(t + 1;2t + 1),N(t - 1; - 4t + 21)\)

Nếu hai vật thể gặp nhau thì M phải trùng N với t nào đó

\(\begin{array}{l} \Leftrightarrow (t + 1;2t + 1) = (t - 1; - 4t + 21)\\ \Leftrightarrow \left\{ \begin{array}{l}t + 1 = t - 1\\2t + 1 =  - 4t + 21\end{array} \right.\end{array}\)

\( \Leftrightarrow \left\{ \begin{array}{l}1 =  - 1\\2t + 1 =  - 4t + 21\end{array} \right.\)(Vô lí)

Vậy hai vật thể không gặp nhau.

24 tháng 9 2023

Tham khảo:

 

a) 

Lấy điểm B(0;2) và P(0;5).

Ta có: OB=2, AB =1, MP=6 và PN=3.

Xét hai tam giác vuông OBA và MPN ta có: \(\frac{{OB}}{{MP}} = \frac{{AB}}{{PN}} = \frac{1}{3}\)

Do đó hai tam giác đồng dạng và OA // MN.

Suy ra \(\overrightarrow {OA} ,\;\overrightarrow {MN} \) cùng phương.

Hơn nữa, \(\overrightarrow {OA} ,\;\overrightarrow {MN} \) cùng hướng và MN = 3 OA.

b) Mỗi giờ, vật thể đó đi được quãng đường tương ứng với đoạn thẳng OA.

Vì \({MN}  = 3. {OA} \) nên vật thể đó sẽ đi qua N sau 3 giờ kể từ lúc khởi hành.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Vật thể đi qua điểm \(A\left( {2;1} \right)\) và  đi theo hướng  vectơ \(\overrightarrow v \left( {3;4} \right)\).

b) Sau thời gian t thì vectơ vận tốc của vật thể là: \(t\overrightarrow v  = \left( {3t;4t} \right)\).

Vậy tọa độ của vật thể sau thời gian t là: \(\overrightarrow {OA}  + t\overrightarrow v  = \left( {2 + 3t;1 + 4t} \right)\).

30 tháng 12 2023

 Do nếu thực hiện 1 thao tác thì số bi trong mỗi chồng vẫn không thay đổi nên chắc chắn trong số các chồng ban đầu phải có đúng 1 chồng chứa 1 viên bi. (Vì nếu chồng nào cũng có từ 2 viên bi trở lên thì sau khi thực hiện thao tác, ta sẽ có thêm 1 cột mới, không thỏa mãn; còn nếu có 2 hay nhiều chồng có 1 viên bi thì sau khi thực hiện thao tác, số chồng sẽ giảm đi.)

 Hơn nữa, lập luận tương tự, sau khi thực hiện xong thao tác lần đầu, ở lần thứ hai cũng bắt buộc phải có đúng một chồng có 1 viên bi. Điều này đòi hỏi ban đầu phải có đúng 1 chồng có 2 viên bi.

 Cứ tiếp tục như thế, trong số các chồng ban đầu, phải có 1 chồng có 3 viên và 1 chồng có 4 viên bi. Do đó, chỉ có duy nhất 1 trường hợp sau là thỏa mãn ycbt. 

Vậy có thể có 4 cọc tất cả.