Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đổi 3 giờ 36 phút=\(\dfrac{18}{5}\)=3,6 giờ
gọi thời gian vòi 1 và vòi 2 chảy riêng đầy bể lần lượt:x,y(x,y>3,6)
=>hệ pt: \(\left\{{}\begin{matrix}y-x=3\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3,6}\end{matrix}\right.\)
giải hệ pt trên ta tính được \(\left\{{}\begin{matrix}x=6\left(TM\right)\\y=9\left(TM\right)\end{matrix}\right.\)
vậy nếu chảy riêng đầy bể vòi 1 chảy trong 6 giờ
vòi 2 chảy riêng trong 9 giờ
gọi 1/x là số nước chảy vào trong 1 h của vòi một
=> ... vòi hai là 1/X+6
ta có:
1/x+1/x+6 = 1/4
=> x bằng 6
. vậy nếu mở riêng từng vòi thì vòi 1 có thời gian là 6h
vòi hai là 10h
Gọi thời gian vòi một chảy một mình đến đầy bể là x (giờ) (x>0)
thời gian vòi hai chảy một mình đến đầy bể là y (giờ) (y>0)
Ta có hpt :
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\x=y-10\end{cases}\Leftrightarrow\hept{\begin{cases}x=20\\y=30\end{cases}\left(TM\right)}}\)
Vậy nếu chảy riêng thì vòi một chảy trong 20 giờ thì đầy bể, vòi hai chảy trong 30 giờ thì đầy bể
Gọi thời gian chảy của vòi thứ nhất để bể đầy là a giờ (a > 0)
\(\Rightarrow\)Thời gian chảy của vòi thứ 2 để bể đầy là a + 2 giờ
Đổi : 2 giờ 24 phút : = \(\frac{12}{5}\) giờ
\(\Rightarrow\)Nếu cả 2 vòi cùng chảy thì sau một giờ nước trong bể sẽ bằng : \(\frac{1}{\frac{12}{5}}=\frac{5}{12}\)(bể)
Ta có phương trình :
\(\frac{1}{a}+\frac{1}{a+2}=\frac{5}{12}\)
\(\Leftrightarrow\frac{12\left(a+2\right)+12a}{12a\left(a+2\right)}=\frac{5a\left(a+2\right)}{12a\left(a+2\right)}\)
\(\Leftrightarrow12a+24+12a=5a^2+10a\)
\(\Leftrightarrow-5a^2+14a+24=0\)
\(\Leftrightarrow-5a^2-6a+20a+24=0\)
\(\Leftrightarrow-a\left(5a+6\right)+4\left(5a+6\right)=0\)
\(\Leftrightarrow\left(5a+6\right)\left(4-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5a+6=0\\4-a=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{6}{5}\left(ktm\right)\\a=4\left(tm\right)\end{cases}}\)
Vậy thời gian vòi thứ nhất chảy 1 mình để đầy bể là 4 giờ
thời gian vòi thứ 2 chảy 1 mình để đầy bể là 4 + 2 = 6 giờ.
Gọi thời gian chiếc máy bơm thứ nhất chảy riêng để đầy bể là x (giờ, x>3)
thời gian chiếc máy bơm thứ hai chảy riêng để đầy bể là y (giờ, y>8)
Trong 1h, máy thứ nhất chảy đc \(\frac{1}{x}\)(bể); máy thứ 2 chảy đc \(\frac{1}{y}\)(bể); cả 2 máy cùng chảy đc \(\frac{1}{3}\)(bể)
Do đó ta có pt: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\left(1\right)\)
Vì thời gian chảy riêng để đầy bể của chiếc thứ nhất ít hơn chiếc thứ 2 là 8h nên ta có pt:\(x+8=y\left(1\right)\)
Từ (1)(2) ta có hpt \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\\x+8=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=x+8\\\frac{1}{x}+\frac{1}{x+8}=\frac{1}{3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=x+8\\3x+24+3x=x^2+8x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+2x-24=0\\y=x+8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-4x+6x-24=0\\y=x+8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+6\right)\left(x-4\right)=0\\y=x+8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-6;y=2\left(koTMĐK\right)\\x=4;y=12\left(TMĐK\right)\end{cases}}\)
Vậy thời gian máy thứ nhất chảy riêng đầy bể là 4h; máy thứ 2 là 12h