Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔOBC cân tại O nên \(\widehat{BOC}=180^0-2\cdot\widehat{OBC}\)
ΔBO'D cân tại O' nên \(\widehat{BO'D}=180^0-2\cdot\widehat{O'BD}\)
mà \(\widehat{OBC}=\widehat{O'BD}\)
nên \(\widehat{BOC}=\widehat{BO'D}\)
vì C, B cùng thuộc đường tròn (O) => OB=OC => tam giác OBC cân tại O => góc OCB= góc OBC (1)
tương tự góc O'BD= góc O'DB (2)
vì BD là tia pg của góc OBO' => góc OBC= góc DBO' (3)
từ (1) , (2) , (3)=> góc OBC=OCB=O'DB=O'BD
=> góc BOC = góc DO'B
a: Xét tứ giác AKIB có
góc AKB=góc AIB=90độ
=>AKIB là tứ giác nội tiếp
b: góc BHD=góc AHE=90 độ-góc HAC=90 độ-1/2*sđ cung CD
góc BDH=90 độ-góc IBD=90 độ-1/2*sđ cung CD
=>góc BHD=góc BDH
=>ΔBHD cân tại B
Mình sẽ giải lại 2 câu a và b.
a) Vì (O) và (O') giao nhau tại A và B nên AB vuông góc OO'. Do đó ^BO'O = 1/2.^AO'B = ^BDA
Tương tự ^BOO' = ^BCA. Từ đó \(\Delta\)BOO' ~ \(\Delta\)BCD (g.g) (đpcm).
b) Ta thấy: ^KDA = ^ABD (=1/2.Sđ(AD nhỏ của (O')). Tương tự ^KCA= ^ABC
Nên ta có: ^KCB + ^KDB = ^BCD + ^BDC + ^KDA + ^KCA = ^BDC + ^BCD + ^ABD + ^ABC = 1800
Suy ra tứ giác BCKD nội tiếp (đpcm).
c) Vì IE // DK nên ^DIE = ^KDA (So le trong) = ^ABD (cmt) => ^DIE = ^ABE => Tứ giác AIEB nội tiếp
=> ^BAE = ^BIE = ^BKD (Vì IE // KD) = ^BCD (Tứ giác BCKD nt) = 1/2.Sđ(AB nhỏ của (O)
Do vậy AE là tiếp tuyến của (O) (đpcm).