Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua phép vị tự tỉ số k biến đường tròn (O; R) thành (O’; R).
Ta có: R’ = R nên |k| = 1
Suy ra: k = 1 hoặc k = -1
* Nếu k= 1 thì phép tự là phép đồng nhất: ( mâu thuẫn giả thiết)
* Khi k=-1 thì tâm vị tự là trung điểm của OO’.
Đáp án B
Có một phép vị tự duy nhất, tâm vị tự là trung điểm OO’, tỉ số vị tự là k = -1.
Đáp án B
Vì : \(\overrightarrow{MN}=\overrightarrow{OA}\Rightarrow T_{\overrightarrow{OA}}:M\rightarrow N\). Do đó N nằm trên đường tròn ảnh của (O;R) . Mặt khác N lại nằm trên (O’;R’) do đó N là giao của đường tròn ảnh với với (O’;R’) . Từ đó suy ra cách tìm :
- Vè đường tròn tâm A bán kính R , đường tròn náy cắt (O’;R’) tại N
- Kẻ đường thẳng d qua N và song song với OA , suy ra d cắt (O;R) tại M
Gọi (C) là đường tròn tâm O bán kính r, \(\left(C_1\right)\) là đường tròn tâm O bán kính R. Giả sử đường thẳng đã dựng được. Khi đó có thể xem D là ảnh của B qua phép đối xứng qua tâm A. Gọi (C') là ảnh của (C) qua phép đối xứng qua tâm A, thì D thuộc giao của (C') và \(\left(C_1\right)\).
Số nghiệm của bài toán phụ thuộc vào số giao điểm của (C') và \(\left(C_1\right)\).
Đáp án C
Phép vị tự tâm O tỉ số ± R ' R