K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.1. Tìm m để d2 đi qua điểm E(1 ; 3).2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.3. Tìm m để ba đường thẳng trên đồng quy.4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớnnhất.5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích tam giác OAB theo hệ...
Đọc tiếp

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.
1. Tìm m để d2 đi qua điểm E(1 ; 3).
2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.
3. Tìm m để ba đường thẳng trên đồng quy.
4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớn
nhất.
5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích tam giác OAB theo hệ thức
lượng.
6. Lập phương trình đường thẳng d đi qua điểm M(3 ; 8) và song song với d3, cắt hai trục tọa độ tại C và
D. Tính độ dài đường cao của tam giác COD, từ đó suy ra khoảng cách từ điểm M đến d3.
7. Lập phương trình đường thẳng d’ qua M và vuông góc với d3. Tìm hình chiếu N của M trên d3, từ đó
tính khoảng cách từ M đến d3

1

1:Thay x=1 và y=3 vào (d2), ta được:

\(m-2m+3=3\)

hay m=0

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:

Giao điểm của 2 đường thẳng thuộc trục hoành nên có dạng $(a,0)$. Vì điểm này thuộc $(d_1):x+y=-1$ nên $a+0=-1\Rightarrow a=-1$

Vậy giao điểm của 2 ĐT trên là $(-1,0)$

Giao điểm này $\in (d_2)$ khi mà $m.(-1)+0=1$

$\Leftrightarrow m=-1$

 

3 tháng 1 2019

Ta có phương trình hoành độ giao điểm của  d 1   v à   d 2 :   m x   –   2 = 1 2   x   +   1   ( * )

Để hai đường thẳng d 1   v à   d 2 cắt nhau tại một điểm có hoành độ  x   =   − 4   t h ì   x   =   − 4 thỏa mãn phương trình (*)

Suy ra m . ( − 4 )   –   2 = 1 2   . ( − 4 )   +   1 ⇔     − 4 m   –   2   =   − 2   +   1     ⇔ − 4 m   =   1   ⇔ m = 1 4  

Đáp án cần chọn là: A

17 tháng 11 2021

PTHDGD: \(\left(2m-5\right)x-m-2=-3-x\)

2 đt cắt tại 1 điểm trên trục tung nên x=0

\(\Leftrightarrow-m-2=-3\Leftrightarrow m=1\)