K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Giải

a) Vì Ot là phân giác của ˆxOyxOy^

nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^

Ot' là phân giác của ˆxOy′xOy′^

nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)

mà (ˆxOyxOy^ + ˆxOy′xOy′^) =  180(2 góc kề bù)

=>  ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800   900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^,  ˆx′Oyx′Oy^  thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

8 tháng 12 2017

a) Vì Ot là phân giác của ˆxOyxOy^
nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^
Ot' là phân giác của ˆxOy′xOy′^
nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)
mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 180
0
(2 góc kề bù)
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212180
0 = 90
0
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông
b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'
Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy
=> M cách đều xx',yy'
M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'
=> M cách đều xx',yy'
c) M cách đều hai đường thẳng xx', yy'
Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'
d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0
e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo
bởi hai đường thẳng cắt nhau đó.

19 tháng 4 2017

Hướng dẫn:

a) Vì Ot là phân giác của ˆxOyxOy^

nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^

Ot' là phân giác của ˆxOy′xOy′^

nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)

mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 1800 (2 góc kề bù)

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800 = 900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

19 tháng 4 2017

a) Vì Ot là phân giác của xOy^

nên yOt^ = xOt^ = 12xOy^

Ot' là phân giác của xOy′^

nên xOt′^ = y′Ot′^ = 12xOy′^

=> xOt^ + xOt′^ = 12xOy^ + 12xOy′^ = 12(xOy^ +

12 tháng 9 2021

a) Các cặp góc đối đỉnh là:
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\)\(\widehat{x'Oy}\) và \(\widehat{y'Ox}\).
b) + Có tia Ot là tia phân giác của góc xOy
\(\Rightarrow\widehat{xOt}=\widehat{yOt}=\dfrac{\widehat{xOy}}{2}\)

+ Có tia Oz là tia phân giác của góc x'Oy'
\(\Rightarrow\widehat{x'Oz}=\widehat{y'Oz}=\dfrac{\widehat{x'Oy'}}{2}\)

+ Có hai góc xOy' và góc xOy là hai góc kề bù
\(\Rightarrow\widehat{xOy}'+\widehat{xOy}=180^o\)
+ Có hai góc xOy và góc x'Oy' là một cặp góc đối đỉnh
\(\Rightarrow\) \(\widehat{xOy}=\widehat{x'Oy'}\)
\(\Rightarrow\dfrac{\widehat{xOy}}{2}=\dfrac{\widehat{x'Oy'}}{2}\)
\(\Rightarrow\widehat{xOt}=\widehat{y'Oz}=\dfrac{\widehat{xOy}}{2}\)
\(\Rightarrow\widehat{xOt}+\widehat{xOy'}+\widehat{y'Oz}=2\cdot\dfrac{\widehat{xOy}}{2}+\widehat{xOy'}=\widehat{xOy}+\widehat{xOy'}=\widehat{zOt}=180^o\)
nên hai tia Ot và Oz là hai tia đối nhau.

Mong cái này giúp được bạn nhé. ☺

13 tháng 9 2021

thanks

Bài 1:

a: góc zOy'=góc xOy'/2=(180-110)/2=35 độ

góc x'Oy=180-110=70 độ

=>góc yOt=70/2=35 độ

b: Vì góc xOz=góc x'Ot

nên góc x'Ot+góc x'Oz=180 độ

=>Ot và Oz là hai tia đối nhau

Bài toán 5: Vẽ đường tròn tâm O và các đường kính AB và CD. Kể tên các cặp góc đối đỉnh trong hình vẽ.Bài toán 6: Hai đường thẳng AB và CD cắt nhau tại O. Biết góc AOC+ góc BOD=103 độ.Tính số đo của bốn góc tạo thành.Bài toán 7: Hai đường thẳng MN và PQ cắt nhau tại O, tạo thành góc MOP =60 độa) Tính số đo của các góc còn lại;b) Vẽ tia Ot là tia phân giác của góc MOP rồi vẽ tia Ot’ là...
Đọc tiếp

Bài toán 5: Vẽ đường tròn tâm O và các đường kính AB và CD. Kể tên các cặp góc đối đỉnh trong hình vẽ.

Bài toán 6: Hai đường thẳng AB và CD cắt nhau tại O. Biết góc AOC+ góc BOD=103 độ.Tính số đo của bốn góc tạo thành.

Bài toán 7: Hai đường thẳng MN và PQ cắt nhau tại O, tạo thành góc MOP =60 độ

a) Tính số đo của các góc còn lại;

b) Vẽ tia Ot là tia phân giác của góc MOP rồi vẽ tia Ot’ là tia đối của tia Ot. Vì sao tia Ot’ là tia phân giác của  góc NOQ

c) Kể tên các cặp góc đối đỉnh là góc nhọn.

Bài toán 8: Cho góc AOB Vẽ góc kề bù với góc AOB Vẽ góc AOD kề bù với góc AOB. Trên hình vẽ có hai góc nào đối đỉnh?

Bài toán 9: Hai đường thẳng AB và CD cắt nhau tại  O tạo thành góc AOD= 110 độ. Tính ba góc còn lại

giúp mình với mọi người ơi

 

0