K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

a)  Đúng

b)  Sai. Vì hai đường thẳng không cắt nhau có thể song song hoặc trùng nhau.

c)  Đúng

d)  Đúng

e)  Đúng

f)   Đúng

18 tháng 9 2023

Ta có: +) a // b, b // c nên a // c ( Hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau)

+) m \( \bot \) a; n \( \bot \)a nên m // n (Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

Theo định lý “Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia, ta có:

+) a // b; a \( \bot \)n nên b \( \bot \)n

+) a // b; a \( \bot \)m nên b \( \bot \)m

+) a // c; a \( \bot \)n nên c \( \bot \)n

+) a // c; a \( \bot \)m nên c \( \bot \)m

Vậy các cặp đường thẳng song song là: a // b ; a // c ; b // c; m // n

Các cặp đường thẳng vuôn góc là: b \( \bot \)n; b \( \bot \)m; c \( \bot \)n; c \( \bot \)m; a \( \bot \)n; a \( \bot \)m

19 tháng 1 2022

•----•??

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với...
Đọc tiếp

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với đường thẳng thứ ba. 6. Đường thẳng cùng đi qua hai trong ba điểm ấy có chứa điểm thứ ba. 7. Sử dụng tính chất đường phân giác của một góc, tính chất đường trung trực của đoạn thẳng, tính chất ba đường cao trong tam giác . 8. Sử dụng tính chất hình bình hành. 9. Sử dụng tính chất góc nội tiếp đường tròn. 10. Sử dụng góc bằng nhau đối đỉnh 11. Sử dụng trung điểm các cạnh bên, các đường chéo của hình thang thẳng hàng 12. Chứng minh phản chứng 13. Sử dụng diện tích tam giác tạo bởi ba điểm bằng 0 14. Sử dụng sự đồng qui của các đường thẳng.\)

0
12 tháng 8 2016

c e