K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

Chọn C.

Điểm M Ox M(x; 0).

Khi đó 

ΔMAB vuông tại M nên 

Hay (–3 – x)(4 – x) + 2.3 = 0

–12 + 3x – 4x + x2 + 6 = 0

x2 – x – 6 = 0 ⇔ .

Vậy: M1(3; 0), M2(-2; 0) và tổng hoành độ của chúng là : 3 + (-2) = 1.

20 tháng 6 2018

Chọn C.

Gọi M(x; 0) với x > 0.

Khi đó 

Để tam giác MAB vuông tai M khi và chỉ khi

13 tháng 4 2017

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

a) D nằm trên trục Ox nên D có tọa độ D(x ; 0)

Khi đó :

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Vậy chu vi tam giác OAB là P = AO + BO + AB = √10 + 2√5 + √10 = 2√5 + 2√10

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

29 tháng 12 2021

a: \(\overrightarrow{MA}=\left(1-x_M;-1\right)\)

\(\overrightarrow{MB}=\left(3-x_M;0\right)\)

Để ΔMAB vuông tại M thì \(\left(1-x_M\right)\left(3-x_M\right)-1=0\)

=>xM=2

a: vì M nằm trên trục Ox nên M(x;0)

\(\overrightarrow{MA}=\left(x_A-x_M;y_A-y_M\right)=\left(-3-x_M;2\right)\)

\(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(4-x_M;3\right)\)

Ta có: ΔMAB vuông tại M

nên \(\overrightarrow{MA}\cdot\overrightarrow{MB}=0\)

\(\Leftrightarrow\left(-3-x_M\right)\left(4-x_M\right)+6=0\)

\(\Leftrightarrow\left(x_M+3\right)\left(x_M-4\right)+6=0\)

\(\Leftrightarrow x_M^2-x_M-6=0\)

=>xM=3

11 tháng 8 2015

a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng

b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)

c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)

d)  \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)

=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\)  =>  \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A

Ta có: AB2 = 2+ 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A

vậy...

e) Có thể đề của bạn là tam giác ABE vuông cân tại E  ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)

g) M nằm trên Ox => M (m; 0)

Tam giác OMA cân tại O <=> OM = OA  Hay OM2 = OA<=> m= (-1)+ 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = -  \(\sqrt{2}\)

Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )

NV
4 tháng 1

M thuộc Oy \(\Rightarrow M\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;1\right)\\\overrightarrow{BM}=\left(1;y-3\right)\end{matrix}\right.\)

ABM vuông tại B \(\Rightarrow\overrightarrow{AB}.\overrightarrow{BM}=0\)

\(\Rightarrow-2+y-3=0\Rightarrow y=5\)

\(\Rightarrow M\left(0;5\right)\)

NV
5 tháng 1 2021

Gọi \(C\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-6;2\right)\\\overrightarrow{BC}=\left(x+2;-4\right)\end{matrix}\right.\)

Tam giác ABC vuông tại B \(\Leftrightarrow\overrightarrow{AB}.\overrightarrow{BC}=0\)

\(\Rightarrow-6\left(x+2\right)-8=0\) \(\Rightarrow x=-\dfrac{10}{3}\)

\(\Rightarrow C\left(-\dfrac{10}{3};0\right)\)

Bạn tự tính tọa độ \(\overrightarrow{AC};\overrightarrow{BC}\) từ đó suy ra độ dài 3 cạnh và tính được chu vi, diện tích

Do tam giác ABC vuông tại B nên ABCD là hcn khi \(\overrightarrow{AB}=\overrightarrow{DC}\)

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(-\dfrac{10}{3}-x;-y\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{10}{3}-x=-6\\-y=2\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{8}{3};-2\right)\)

NV
9 tháng 3 2021

Câu 1 đề thiếu, điểm C thỏa mãn điều gì nữa? (ví dụ G là trọng tâm tam giác?)

Câu 2:

Do B, C đều thuộc d nên tọa độ có dạng: \(B\left(2b-3;b\right);C\left(2c-3;c\right)\) với \(b\ne c\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2c-2;c-2\right)\\\overrightarrow{BC}=\left(2c-2b;c-b\right)\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\AC=3BC\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2c-2\right)\left(2c-2b\right)+\left(c-2\right)\left(c-b\right)=0\\\left(2c-2\right)^2+\left(c-2\right)^2=9\left(2c-2b\right)^2+9\left(c-b\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4c-4+c-2=0\\\left(2c-2\right)^2+\left(c-2\right)^2=45\left(c-b\right)^2\end{matrix}\right.\)

\(\Rightarrow...\)