Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đa thức M(x) = 3x4 - 2x3 + 5x2 - 4x + 1
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=3x^4-2x^3+5x^2-4x+1-3x^4+2x^3-3x^2+7x+5\)
\(=2x^2+3x+6\)
b, Tại x = -x
< = > 2x = 0 <=> x = 0 thì giá trị của biểu thức P ( x ) = 6
\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)
\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x+6\)
\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)
\(=6x^4-4x^3+10x^2-11x-4\)
A(x)=5x^4-3x^3-7x^2+4x+2
B(x)=-5x^4+3x^3+6x^2-2x-30
A(x)+B(x)=-x^2+2x-28=-(x-1)^2-27<0
=>A(x) và B(x) ko đồng thời dương
a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)
\(N\left(x\right)=2x^4+3x^2+4x-5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)
Đặt P(x)=0
=>-3x-7=0
hay x=-7/3
b: Q(x)=N(x)-M(x)
\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)
\(=4x^4+6x^2+11x+7\)
e:
Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔABH=ΔACH
Xét ΔABC có
AH,BM là trung tuyến
AH cắt BM tại G
=>G là trọng tâm
BH=CH=9cm
=>AH=căn 15^2-9^2=12cm
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trug điểm của AB
=>C,G,K thẳng hàng
d: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAH vuông tại A và ΔMBK vuông tại B có
MA=MB
góc AMH=góc BMK
=>ΔMAH=ΔMBK
OA+AH=OH
OB+BK=OK
mà OA=OB và AH=BK
nên OH=OK
=>ΔOHK cân tại O
mà OI là phân giác
nên OI vuông góc HK
b: A(x)=0
=>x-7=0
=>x=7
Lời giải:
1.
\(M(x)=A(x)-2B(x)+C(x)\)
\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)
\(=5x^4+2x^2-\frac{21}{16}\)
2.
Khi $x=-\sqrt{0,25}=-0,5$ thì:
\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)
3)
$M(x)=0$
$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$
$\Leftrightarrow 80x^4+32x^2-21=0$
$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$
$\Leftrightarrow (4x^2+3)(20x^2-7)=0$
Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$
$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$
Đây chính là giá trị của $x$ để $M(x)=0$
a, M(\(x\) )+N(\(x\)) = 3\(x^4\) - 2\(x\)3 + 5\(x^2\) - \(4x\)+ 1 + ( -3\(x^4\) + 2\(x^3\)- 3\(x^2\)+ 7\(x\) + 5)
M(\(x\)) + N(\(x\)) = ( 3\(x^4\)- 3\(x^4\))+( -2\(x^3\) + 2\(x^3\))+(5\(x^2\) - 3\(x^2\))+( 7\(x-4x\)) +(1+5)
M(\(x\)) + N(\(x\)) = 0 + 0 + 2\(x^2\) + 3\(x\) + 6
M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
b, P(\(x\)) = M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
P(-2) = 2.(-2)2 + 3.(-2) + 6 = 8 - 6 + 6 = 8