Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Bezout, số dư của phép chia f(x) cho g(x) là \(f\left(1\right)\)
\(f\left(1\right)=1+2-3-4+...-2011-2012\)
\(=-2-2-2-....-2\) (\(\frac{2012}{2}=1006\) số -2)
\(=-2012\)
Vậy số dư là \(-2012\)
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
b) x8 +7x4+16
= x8+8x4-x4+16
= (x8+8x4+16) - x4
=(x4+4)2-x4
= (x4+4+x2)(x4+4-x2)
c) x5+x-1
= x5 - x4+x3+x4-x3+x2-x2+x-1
= x3(x2-x+1) + x2(x2-x+1) - (x2-x+1)
= (x2-x+1)(x3+x2 -1)
d)x7+x2+1
=x7-x+x2 +x+1
= x (x6-1) + (x2+x+1)
= x(x3-1)(x3+1) + (x2+x+1)
= x(x3+1)(x-1)(x2+x+1)+(x2+x+1)
= (x2+x+1)[x(x3+1)(x-1) +1]
= (x2+x+1)(x5-x4+x2-x+1)
= x (x-1)(x2+x+1)
e) x5+x4+1
= x5+x4+x3 - x3+1
= x3(x2+x+1) - (x-1)(x2+x+1)
= (x2+x+1)(x3-x+1)
f) x8+x+1
= x8-x2+x2+x+1
= x2(x6-1)+(x2+x+1)
= x2(x3-1)(x3+1) +(x2+x+1)
= (x5+x2)(x-1)(x2+x+1) +(x2+x+1)
= (x2+x+1)(x6-x5+x3-x2+1)
Vì số đư của phép chia F(x) cho nhị thức g(x)=x-1 chính bằng F(1) (theo định lý bezout) ,nên số dư của phép chia là
F(1)= 1+2-3-4+5+6-....-2012
=-2012
Vậy số dư của phép chia f(x) cho nhị thức g(x)=x-1 là -2012