K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

Vì số đư của phép chia F(x) cho nhị thức g(x)=x-1 chính bằng F(1) (theo định lý bezout) ,nên số dư của phép chia là

F(1)= 1+2-3-4+5+6-....-2012

=-2012

Vậy số dư của phép chia f(x) cho nhị thức g(x)=x-1 là -2012

d: Ta có: f(x):g(x)

\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)

\(=x^2-3x+6+\dfrac{-1}{x+1}\)

Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)

hay \(x\in\left\{0;-2\right\}\)

 

18 tháng 12 2017

Ta có 

Phần dư của phép chia f(x) cho g(x) là R = (a – 3)x + b + 4. Để phép chia trên là phép chia hết thì R = 0, Ɐx

ó (a – 3)x + b + 4 = 0, Ɐx ó   a - 3 = 0 b + 4 = 0

ó a = 3 b = - 4 => ab = -12

Đáp án cần chọn là: A

10 tháng 4 2016

Gọi đa thức dư là ax+b và thương là h(x)

có f(x)=g(x).h(x)+ax+b

thay=1 x=-1 lần lượt ta đc(vì 1-x^2có x=1 x=-1)

a+b=5 và -a+b=1

suy ra a=2 b=3

vậy dư là 2x+3

b: Ta có: f(x):g(x)

\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)

\(=x^2-3x+6+\dfrac{a-6}{x+1}\)

Để f(x):g(x) là phép chia hết thì a-6=0

hay a=6

a: Thay a=3 vào f(x), ta được:

\(f\left(x\right)=x^3-2x^2+3x+3\)

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-2x^2+3x+3}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-3}{x+1}\)

\(=x^2-3x+6-\dfrac{3}{x+1}\)

 

11 tháng 12 2021

\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)

b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)

24 tháng 6 2021

a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)

Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)

\(\Leftrightarrow5⋮\left(x+1\right)\)

mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)

Vậy...

b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)

Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)

\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)

Vậy...

c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)

\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)

Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)

Vậy...

d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)

Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)

Vậy...