Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Xét tam giác bất kì ABC có Bvà C lần lượt nằm trong hai tia Ox và Oy
+ Gọi A' và A'' là các điểm đối xứng với điểm A lần lượt qua các đường thẳng Ox và Oy .
Ta có \(AB=A'B\) và \(AC=A'CC\)( do các tam giác \(ABA'\)và tam giác \(ACA''\)là tam giác cân).
+ Gọi 2p là chu vi của tam giác ABC thì có :
2p = \(AB+BC+CA=A'B+BC+CA''\ge A'A''\)
Dấu'' bằng '' xảy ra khi 4 điểm \(A'B,C,A''\)thẳng hàng .
Nên để chu vi tam giác ABC bé nhất thì phải lấy B và lần lượt là giao điểm của đoạn thẳng \(A'A''\)với hai tia Ox và Oy ( các giao điểm đó tồn tại vì góc xOy nhọn )
Chúc bạn học tốt !!!
Theo đề bài ta có I là trung điểm đoạn EF => I thuộc tia phân giác góc xOy => góc EOI = góc FOI
Cho H,K là chân các đường vuông góc hạ từ M xuống các tia Ox, Oy => \(MH⊥Ox;MK⊥Oy\)(1)
ta có : góc MHO = góc MKO = 900
=> tứ giác OHMK nội tiếp => góc MOK = góc MHK(cùng chắn cung MK),góc MOH = góc HKM (cùng chắn cung HM)
Mà góc MOK = góc MOH (cmt) nên góc MHK = góc HKM => tam giác MHK cân tại M => MH = MK (2)
Từ (1) và (2) => M thuộc đường phân giác của góc xOy
Vì I và M đều thuộc tia phân giác của góc xOy nên I,OM thẳng hàng
p/s còn nhiều cách khác .vd: (dùng hình vẽ trên) : chứng minh 2 tam giác HMO = tam giác KMO( tam giác vuông có cạnh OM chung và góc HOM = góc MOK) => MH=MK -> phần sau làm tương tự.............[cách này ngắn hơn nhưng không dùng cho lớp 9 HKII]
Gọi (O) là đường tròn ngoại tiếp tam giác AOB, ta có độ dài OB lớn nhất khi OB là đường kính đường tròn (O), khi đó tam giác AOB vuông tại A suy ra OB = AB : sin AOB = 2 : sin AOB.
Gọi (O) là đường tròn ngoại tiếp tam giác AOB, ta có độ dài OB lớn nhất khi OB là đường kính của (O), khi đó tam giác AOB vuông tại A, mà góc AOB = 30 độ suy ra OB=2AB=4cm.
Kẻ BH vuông góc với Ox
=> BH = BO/2 ;( sin30 =BH/OB=1/2)
mà BH</ AB
=> BO/2 </ 2 => OB </4
OB max = 4 khi A trùng với H ( BA vuông Ox)