Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)
\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{BAD}=\widehat{DCB}\)
=>\(\widehat{IAB}=\widehat{ICD}\)
OA+AB=OB
OC+CD=OD
mà OA=OC và OB=OD
nên AB=CD
Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
AB=CD
\(\widehat{IBA}=\widehat{IDC}\)
Do đó: ΔIAB=ΔICD
c: ΔIAB=ΔICD
=>ID=IB
Xét ΔOIB và ΔOID có
OI chung
IB=ID
OB=OD
Do đó: ΔOIB=ΔOID
=>\(\widehat{BOI}=\widehat{DOI}\)
=>OI là phân giác của góc DOB
=>OI là phân giác của \(\widehat{xOy}\)
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)
\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{BAD}=\widehat{DCB}\)
=>\(\widehat{IAB}=\widehat{ICD}\)
OA+AB=OB
OC+CD=OD
mà OA=OC và OB=OD
nên AB=CD
Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
AB=CD
\(\widehat{IBA}=\widehat{IDC}\)
Do đó: ΔIAB=ΔICD
c: ΔIAB=ΔICD
=>ID=IB
Xét ΔOIB và ΔOID có
OI chung
IB=ID
OB=OD
Do đó: ΔOIB=ΔOID
=>\(\widehat{BOI}=\widehat{DOI}\)
=>OI là phân giác của góc DOB
=>OI là phân giác của \(\widehat{xOy}\)
Ghi đề còn thiếu
đề vậy đó bạn