K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài yêu cầu gì?

9 tháng 12 2016

Xét tg AOM và tg BOM có:

OA=OB (gt)

Góc AOM=góc BOM ( vì Oz là p/g của góc xOy )

Chung cạnh OM

=> Tg AOM = tg BOM ( c.g.c )

=> Góc OMA = góc OMB ( 2 góc tương ứng )

Còn đây là hình:( hơi tệ nên bạn thông cảm nha! )

A B M x y z O

20 tháng 3 2017

Xet tam giac AOM va tam giac BOM la:

OA=OB (gt)

OM la canh chung

goc AOM= goc BOM (vi OZ la phan giac goc xOy)

Do do: tam giac OAM= tam giac OBM( c-g-c )

=> goc OMA = goc OMB (hai goc tuong ung)

O z y x B M A

Hinh hoi xau mog bn thog cam.

1 tháng 1

a. OA=OB

⇒ΔOAB cân tại O

mà OM là phân giác góc AOB

nên OM là đường trung tuyến ΔAOB

⇒M là trung điểm AB ⇒MA=MB

b. Xét ΔOAM và ΔOBM, có

OA=OB

OM chung

MA=MB

⇒ΔOAM = ΔOBM

nên OMA=OMB (đpcm)

     

16 tháng 12 2016

a) xét tg OAH & tg OBH có :

OH chung

OA = OB ( gt )

góc AOH = góc BOH ( Ot p/g góc xOy )

suy ra tg OAH = tg OBH (c. g .c )

b) do tgOAH = tg OBH ( cmt )

suy ra góc OAH= góc OBH ( 2góc tg ứng )

Xét tg ONB & tg OAM có :

góc OAH= góc OBH ( cmt )

OA = OB ( gt )

góc O chung

suy ra tg ONB = tg OAM ( g . c .g )

c) có : OA = OB suy ra O thuộc trung trực AB (1)

tg tự có AH =BH ( 2 c tg ứng của tg OAH = tg OBH )

suy ra H thuộc trung trực OH (2)

từ (1) & (2) suy ra OH trung trực của AB

suy ra OH vuông góc AB

d) bn tự cm theo cách trên ( cm H thuộc trung trưc MN ) haha

a: Xét ΔADO và ΔBDO có

OA=OB

\(\widehat{AOD}=\widehat{BOD}\)

OD chung

Do đó: ΔADO=ΔBDO

b: Xét ΔOED vuông tại E và ΔOFD vuông tại F có

OD chung

\(\widehat{EOD}=\widehat{FOD}\)

Do đó: ΔOED=ΔOFD

Suy ra: OE=OF

c: Xét ΔOAB có 

OE/OA=OF/OB

Do đó: EF//AB

Xét ΔCBD và ΔADB có 

CD=AB

\(\widehat{CDB}=\widehat{ABD}\)

BD chung

Do đó: ΔCBD=ΔADB

Suy ra: \(\widehat{EBD}=\widehat{EDB}\)

hay ΔEBD cân tại E

Xét ΔOEB và ΔOED có

OE chung

EB=ED

OB=OD

Do đó: ΔOEB=ΔOED
Suy ra: \(\widehat{BOE}=\widehat{DOE}\)

hay OE là tia phân giác của góc xOy

21 tháng 9 2023

Tham khảo:

a) Xét \(\Delta OAD\) và \(\Delta OCB\), ta có :

OD = OB

\(\widehat{A}\) chung

OA = OC 

\(\Rightarrow \Delta OAD=\Delta OCB\) (c-g-c )

\( \Rightarrow AD = BC\)(2 cạnh tương ứng )

b) Vì \(\Delta OAD=\Delta OCB\) nên \(\widehat{OAD}=\widehat{OCB}; \widehat{D}=\widehat{B}\) ( 2 góc tương ứng)

Mà \(\widehat{OAD}+\widehat{BAD}=180^0\) ( 2 góc kề bù)

\(\widehat{OCB}+\widehat{BCD}=180^0\) ( 2 góc kề bù)

Do đó, \(\widehat{BAD}=\widehat{BCD}\)

Vì \(OA+AB=OB; OC+CD=OD\)

Mà \(OC = OA, OD = OB\)

\(\Rightarrow AB=CD\)

Xét \(\Delta EAB\) và \(\Delta ECD\), ta có:

\(\widehat {ABE} = \widehat {CDE}\)

\(AB = CD\)

\(\widehat {BAE} = \widehat {DCE}\)

\(\Rightarrow \Delta EAB=\Delta ECD\) (g-c-g)

c) Vì \(\Delta EAB=\Delta ECD\) nên EB = ED ( 2 cạnh tương ứng)

Xét \(\Delta OBE\) và \(\Delta ODE\), ta có :

 EB = ED

OB = OD

OE chung

\( \Rightarrow \Delta OBE=\Delta ODE \)  (c.c.c)

\( \Rightarrow \widehat{BOE}=\widehat{DOE}\) ( 2 góc tương ứng)

\( \Rightarrow \) OE là phân giác \(\widehat {xOy}\)