Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAK vuông tại K và ΔOAH vuông tại H có
OA chung
\(\widehat{KOA}=\widehat{HOA}\)
Do đó: ΔOAK=ΔOAH
Suy ra: AK=AH
Câu b đề yêu cầu gì?
Cm : a) Xét t/giác OAH và t/giác OBK
có: \(\widehat{OHA}=\widehat{OKB}=90^0\) (gt)
OA = OB (gt)
\(\widehat{O}\) :chung
=> t/giác OAH = t/giác OBK (ch - gn)
b) Xét t/giác OMH và t/giác OMK
có: \(\widehat{OHM}=\widehat{OKM}=90^0\) (gt)
OH = OK (vì t/giác OAH = t/giác OBK)
OM : chung
=> t/giác OMH = t/giác OMK (ch - cgv)
=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc t/ứng)
=> OM là tia p/giác của góc xOy
a: Xét ΔOPM vuông tại P và ΔONM vuông tại N có
OM chung
\(\widehat{POM}=\widehat{NOM}\)
Do đó; ΔOPM=ΔONM
b: Ta có: ΔOPM=ΔONM
nên MN=MP
hay ΔMNP cân tại M
mà \(\widehat{NMP}=60^0\)
nên ΔMNP đều
c: Ta có: ON=OP
MN=MP
Do đó: OM là đường trung trực của NP
hay OM vuông góc tới NP tại Q
+)Xét △OAH(∠OAH=90o) và △OBH(∠OBH=90o) có:
OH là cạnh chung
∠AOH=∠BOH(OH là tia phân giác của ∠xOy)
=>△OAH=△OBH(ch.gn)
b)△OBH là tam giác vuông (∠OBH=90o)
Chúc bạn học tốt
Trả lời:
a, ta có K là 1 điểm thuộc tia phân giác góc xOy
mà KA vuông góc với Ox và KB vuông góc với Oy (gt)
⇒ KA=KB (t/c tia phân giác của 1 góc)
b, Xét ΔOAK vuông tại A và Δ OBK vuông tại B có
OK là canh chung
góc AOK = góc BOK (gt)
⇒ 2 tam giác bằng nhau
⇒ OA = OB ( 2 cạnh tương ứng)
⇒ΔOAB cân tại O
c, Xét ΔAKD vuông tại A và Δ BKE vuông tại B
AK=BK (cmt)
góc AKD = góc BKE ( đối đỉnh)
⇒ 2 tam giác trên bằng nhau
⇒ KD = KE (đpcm)
d, ΔOAK =ΔOBK ⇒ góc OKA = góc OKB ( 2 góc tương ứng)
mà góc AKD = góc BKE ( đối đỉnh)
⇒ góc OKA + góc AKD = góc OKB + góc BKE ⇒ góc OKD = góc OKE
xét ΔOKD và OKE dễ thấy chúng bằng nhau theo th (g-c-g) ⇒ OD=OE ⇒ ΔODE cân tại O mà OK là phân giác góc DOE ⇒ OK là đường cao của DE ⇒ OK ⊥DE (đpcm)
~Học tốt!~
Sửa đề; AH\(\perp\)Oy
Xét ΔOKA vuông tại K và ΔOHA vuông tại H có
OA chung
\(\widehat{KOA}=\widehat{HOA}\)
Do đó: ΔOAK=ΔOAH