Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: Az // Oy
=> góc xOy + góc zAO = 180 độ (hai góc trong cùng phía)
=> góc zAO = 180 độ - 130 độ = 70 độ.
b) Ta có: Ou là tia phân giác của góc góc xOy
=> góc yOu = góc uOx = 70 độ.
Ta có góc xAz và góc zAO là hai góc kề bù
=> góc xAz = 180 độ - zAO = 170 độ - 70 độ =100 độ.
Av là tia phân giác của góc xAz
=> góc xAv = góc góc vAz =70 độ.
=> góc vAx = góc xOu = 70 độ
Mà hai góc này là hai góc so le trong.
=> Ou // Av.
a: Az//Oy
=>\(\widehat{xAz}=\widehat{xOy}\)(hai góc đồng vị)(1)
At' là phân giác của góc xAz
=>\(\widehat{xAt'}=\widehat{zAt'}=\dfrac{1}{2}\cdot\widehat{xAz}\left(2\right)\)
Ot là phân giác của góc xOy
=>\(\widehat{xOt}=\widehat{yOt}=\dfrac{1}{2}\cdot\widehat{xOy}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{xAt'}=\widehat{zAt'}=\widehat{xOt}=\widehat{yOt}\)
=>\(\widehat{xAt'}=\widehat{xOt}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên At'//Ot
b: AH\(\perp\)Ot
At'//Ot
Do đó: AH\(\perp\)At'
=>\(\widehat{t'AH}=90^0\)
c: Gọi B là giao điểm của Az và Ot
Az//Oy
=>\(\widehat{ABO}=\widehat{yOB}\)(so le trong)
mà \(\widehat{yOB}=\widehat{AOB}\)(cmt)
nên \(\widehat{ABO}=\widehat{AOB}\)
=>ΔAOB cân tại A
ΔAOB cân tại A có AH là đường cao
nên AH là phân giác của \(\widehat{OAz}\)
a) Ta có: Ot là tia phân giác của \(\widehat{xOy}\) => \(\widehat{O_1}=\widehat{O_2}=\frac{\widehat{xOy}}{2}\) (1)
On là tia phân giác của \(\widehat{xAm}\) => \(\widehat{A_1}=\widehat{A_2}=\frac{1}{2}\widehat{xAm}\) (2)
Mà Am // Oy (gt) => \(\widehat{xAm}=\widehat{xOy}\) (đồng vị) (3)
Từ (1), (2) và (3) => \(\widehat{O_1}=\widehat{O_2}=\widehat{A_1}=\widehat{A_2}\)
mà \(\widehat{A_2}\) và \(\widehat{O_2}\)ở vị trí đồng vị => An // Ot
b) Ta có: \(\hept{\begin{cases}AH\perp Ot\left(gt\right)\\Ot//On\left(cmt\right)\end{cases}}\Rightarrow AH\perp An\)
Xét tam giác OAH vuông tại H có: \(\widehat{O_2}+\widehat{A_3}=90^0\)
Lại có: \(\widehat{A_1}+\widehat{A_4}=90^0\)(phụ nhau)
mà \(\widehat{O_2}=\widehat{A_1}\) (cm câu a)
=> \(\widehat{A_3}=\widehat{A_4}\) -> AH là tia phân giác của \(\widehat{OAm}\)
Vẽ hình càng tốt nha các bạn! Giải giùm mình nhaaaaaaaaaaaa
bn có thể vẽ hình r mk giải cho dc ko bn?