K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOAB cân tại O

mà OI là phân giác

nên OI vuông góc AB và OI là trung trực của AB

b: Xét ΔOAB có

OI,AD là đường cao

OI cắt AD tại C

=>C là trực tâm

=>BC vuông góc Ox tại E

c: Xét ΔODA vuông tại D và ΔOEB vuông tại E có

OA=OB

góc DOA chung

=>ΔODA=ΔOEB

=>OD=OE

Xét ΔOAB có OE/OA=OD/OB

nên ED//AB

a: Ta có: ΔOAB cân tại O

mà OI là đường phân giác

nên OI là đường cao

b: XétΔOAB có 

OI là đường cao

AD là đường cao

OI cắt AD tại C

Do đó: C là trực tâm của ΔOAB

Suy ra: BC\(\perp\)Ox

c: Xét ΔOAB cân tại O có \(\widehat{AOB}=60^0\)

nên ΔOAB đều

=>\(OC=\dfrac{2}{3}OI=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{2}=\dfrac{2}{3}\cdot\dfrac{6\sqrt{3}}{2}=2\sqrt{3}\left(cm\right)\)

21 tháng 2 2021

b) Xét tam giác AOC và tam giác BOC có:OA=OB(gt)góc AOC = góc BOC(OC là tia phân giác góc AOB)OC chung=>tam giác AOC=tam giác BOC(c-g-c)=>góc OAC= góc OBC=90độ(2 góc tương ứng)=>BC vuông góc với Ox

5 tháng 11 2016

 

a/ Xét tam giác OAC và tam giác OBD có

O : góc chung

OA = OB (GT)

OC = OD (GT)

=> tam giác OAC = tam giác OBD ( cạnh góc cạnh )

=>AC = BD (2 cạnh tương ứng)

b/ Xét tam giác IAD và IBC có

-góc C = góc D (vì tam giác OAC=tam giác OBD)

-A = B = 900

-AI = BI (vì AC = BD)

=> tam giác IAD = tam giác IBC (góc cạnh góc)

=>AD=BC (2 cạnh tương ứng)

c/ Xét tam giác OAI và tam giác OBI có

-OA = OB (GT)

-góc AIO = góc OIB

-A = B = 900

=> tam giác OAI = tam giác OBI (cạnh góc cạnh)

=> góc AOI = góc IOB (2 góc tương ứng)

Vậy OI là phân giác của góc O

d/ Gọi OI và AB cắt nhau tại M

Xét tam giác OAM và tam giác OBM có

-AOM = BOM

-OA = OB

-OM: cạnh chung

=> tam giác OAM = tam giác OBM (cạnh góc cạnh)

=> AMO = BMO

Ta có: AMO + BMO = 1800 (kề bù)

Mà AMO = BMO

=> AMO = BMO = 1/2 1800 = 900

Vậy OI là đường trung trực của đoạn AB

e/ Gọi phân giác của góc O cắt CD tại N

Xét tam giác INC = tam giác IND có

IN: cạnh chung

DIN = CIN

ID = IC

=> tam giác INC = tam giác IND (cạnh góc cạnh)

=> INC = IND

Ta có; IND + INC =1800 (kề bù)

Mà INC = IND

=> INC =IND = 1/2 1800 = 900

=> IN là trung trực của CD

Ta có: IN là trung trực của CD

OI là trung trực của AB

=> AB//CD

11 tháng 8 2021

a.Xét $\triangle$OAI và $\triangle$OBI có:

$\widehat{AOI}$ = $\widehat{BOI}$(OI là phân giác của $\widehat{xOy}$)

OB = OA(gt)

OI chung

=> $\triangle$OAI = $\triangle$OBI(c-g-c)

=>$\widehat{OIA}$ = $\widehat{OIB}$(2 góc t/ứ)

mà $\widehat{OIA}$ + $\widehat{OIB}$ = $180^0$

=>$\widehat{OIA}$ = $\widehat{OIB}$ = $180^0$ : 2 = $90^0$

=> OI$\bot$AB(đpcm)

b.Xét $\triangle$OBA có

AD là đng cao t/ứ vs OB(gt)

OI là đng cao t/ứ vs AB(cmt)

AD cắt OI tại C(gt)

=>C là trực tâm của $\triangle$OBA(tính chất 3 đng cao của $\triangle$)

=>BC ⊥Ox(đpcm)

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

19 tháng 12 2016

a) Xét 2 tam giác vuông OAC và tam giác OBD có:

OA = OB (gt)

O là góc chung

suy ra tam giác OAC = tam giác OBD (cạnh góc vuông - góc nhọn kề cạnh ấy)

b) Ta có : OD = OA + AD

OC = OB + BC

mà OD = OC (vì tam giác OAC = tam giác OBD)

OA = OB ( gt)

suy ra AD = BC

Xét 2 tam giác vuông ADI và tam giác BCI có:

AD = BC (cmt)

góc D = góc C (vì tam giác OAC = tam giác OBD)

suy ra tam giác ADI và tam giác BCI (cạnh goác vuông - góc nhọn kề cạnh ấy)

suy ra IA = IB (2 cạnh tương ứng)

c)Xét 2 tam giác vuông OAI và tam giác OBI có:

OI là cạnh chung

OA = OB (gt)

suy ra tam giác OAI = tam giác OBI (2 cạnh góc vuông)

suy ra góc O1 = góc O2 (2 góc tương ứng)

suy ra OI là tia phân giác của góc xOy

Cái chỗ A1, A2, B1, B2 bạn đừng kí hiệu vào bài làm nhé!

Mình nhầm tí!

19 tháng 12 2016

Ta có hình vẽ: O A D I C B 1 2 1 2 1 2