Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Vì oz lak phân giác của xoy nên xoz=yoz=xoy/2
xét tam giác AOI và tam giác BOI có:
OA=OB(gt)
AOI=BOI(cmt)
OI lak cạnh chung nên tam giác AOI=BOI(cgc)(đpcm)
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
a: Xet ΔOAI và ΔOBI có
OA=OB
góc AOI=góc BOI
OI chung
=>ΔOAI=ΔOBI
b: ΔOAB cân tại O
mà OH là phân giác
nên OH vuông góc BA và H là trung điểm của BA
Xét ΔIHA vuông tại H và ΔIHB vuông tại H có
IH chung
HA=HB
=>ΔIHA=ΔIHB
c: IH vuông góc AB
=>ΔIHA vuông tại H, ΔIHB vuông tại H
Ta có hình vẽ:
a) Vì Oz là phân giác của xOy nên \(xOz=yOz=\frac{xOy}{2}\)
Xét Δ AOI và Δ BOI có:
OA = OB (gt)
AOI = BOI (cmt)
OI là cạnh chung
Do đó, Δ AOI = Δ BOI (c.g.c) (đpcm)
b) Xét Δ AOH và Δ BOH có:
OA = OB (gt)
AOH = BOH (câu a)
OH là cạnh chung
Do đó, Δ AOH = Δ BOH (c.g.c)
=> AHO = BHO (2 góc tương ứng)
Mà AHO + BHO = 180o (kề bù) nên AHO = BHO = 90o
=> \(AB\perp OI\left(đpcm\right)\)
a) xét \(\Delta AOI,\Delta BOI\) có :
OA = OB ( GT )
OI cạnh chung
\(\widehat{AOI}\) = \(\widehat{BOI}\) ( vì Oz phân giác \(\widehat{xOy}\) )
\(\Rightarrow\Delta AOI=\Delta BOI\left(c.g.c\right)\)
b )
gọi H là giao điểm AB , OI
xét \(\Delta OAH,\Delta OBH\) có
OH chung
\(\widehat{AOH}\) = \(\widehat{BOH}\) ( OI phân giác \(\widehat{xOy}\) )
OA = OB ( GT )
\(\Rightarrow\Delta OAH=\Delta BOH\left(c.g.c\right)\)
ta có : \(\widehat{AHO}\) = \(\widehat{BHO}\) ( 2 góc tương ứng )
mà \(\widehat{AOH}\) + \(\widehat{BHO}\) = 180o ( 2 góc kề bù )
\(\Rightarrow\widehat{AOH}\) = \(\widehat{BHO}\) = \(\frac{180^O}{2}\) = 90o
\(\Rightarrow AB\perp OI\) tại H
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
Hình bạn tự vẽ nha
Xét \(\Delta AIO\) và \(\Delta BIO\) có:
OI chung
\(\widehat{AOI} = \widehat{BOI}\) (Oz là tia phân giác của \(\widehat{xOy}\) (gt))
OA = OB (gt)
\(\Rightarrow\)\(\Delta AIO = \Delta BIO\) (cgc)
b) Vì \(\Delta AIO = \Delta BIO\) (cmt)
\(\Rightarrow IB=IA\) (2 cạnh tương ứng)
mà OA = OB (gt)
\(\Rightarrow OI\) là đường trung trực của AB
hay \(AB \perp OI\)
A) Vì Oz là tia phân giác của góc xOy nên \(\widehat{xOz}=\widehat{yOz}=\widehat{\frac{xOy}{2}}\)
Xét tam giác AOI và tam giác BOI có :
OA = OB ( gt )
AOI = BOI ( cmt)
OI là cạnh chung
Nên : \(\Delta AOI=\Delta BOI\)( c . g . c ) ( đpcm)
b) Xét tam giác AOH và tam giác BOH có :
OA = OB ( gt)
AOH = BOH ( CÂU A )
OH là cạnh chung
Nên ta có : \(\Delta AOH=\Delta BOH\)( c . g. c )
\(\Rightarrow AHO=BHO\)( 2 góc tương ứng )
Mà AHO + BHO = \(180^o\) ( kề bù ) nên AHO = BHO = \(90^o\)
nên AB vuông góc với OI ( đpcm)
Chúc ban học tốt !!!