K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

\(\frac{3}{15}\cdot G=\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+...+\frac{3}{68\cdot71}\)

\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)

\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{71}\)

\(G=\frac{60}{781}\cdot\frac{15}{3}\)

\(G=\frac{300}{781}\)

8 tháng 8 2018

ta có :\(\frac{3}{15}G=\left(\frac{15}{11.14}+\frac{15}{14.17}+...+\frac{15}{68.71}\right)\)

\(\frac{3}{15}G=\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{68.71}\)

\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)

\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{71}=\frac{71}{781}-\frac{11}{781}=\frac{60}{781}\)

\(=>G=\frac{60}{781}:\frac{3}{15}=\frac{900}{2343}\)

vậy G =900/2343

17 tháng 8 2017

\(\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{68.71}\)

\(=5\left(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{68}-\dfrac{1}{71}\right)\)

\(=5\left(\dfrac{1}{11}-\dfrac{1}{71}\right)\)

\(=5.\dfrac{60}{781}\)

\(=\dfrac{300}{781}\)

3 tháng 3 2017

\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+...+\frac{15}{72.75}\)

\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{72.75}\right)\)

\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+...+\frac{1}{72}-\frac{1}{75}\right)\)\(=5\left(\frac{1}{11}-\frac{1}{75}\right)\)

\(=\frac{64}{165}\)

3 tháng 3 2017

pài này gần giống pài troq v15

13 tháng 3 2017

\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+.......+\frac{15}{74.77}\)

\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+.......+\frac{3}{74.77}\right)\)

\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+.....+\frac{1}{74}-\frac{1}{77}\right)\)

\(=5\left(\frac{1}{11}-\frac{1}{77}\right)\)

\(=5\left(\frac{7}{77}-\frac{1}{77}\right)\)

\(=5.\frac{6}{77}\)

\(=\frac{30}{77}\)

12 tháng 3 2017

theo bài ra ta có:

\(E=\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{74.77}\\ \Rightarrow\dfrac{1}{5}E=\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+...+\dfrac{3}{74.77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{74}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{7}{77}-\dfrac{1}{77}=\dfrac{6}{77}\\ \Rightarrow E=\dfrac{6}{77}.5\\ E=\dfrac{30}{77}\)

5 .\((\)\(\dfrac{3}{11.14}+\dfrac{3}{14.17}+...+\dfrac{3}{74.77}\))

= 5. (\(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{74}-\dfrac{1}{77}\))

= 5.(\(\dfrac{1}{11}-\dfrac{1}{77}\))

= 5. \(\dfrac{6}{77}\)

= \(\dfrac{30}{77}\)

7 tháng 7 2017

Ta có : \(\frac{15}{5.8}-\frac{15}{8.11}-\frac{15}{11.14}-......-\frac{15}{47.45}\)

\(=\frac{3}{8}-\left(\frac{15}{8.11}+\frac{15}{11.14}+\frac{15}{14.17}+......+\frac{15}{47.50}\right)\)

\(=\frac{3}{8}-\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+.....+\frac{11}{47}-\frac{1}{50}\right)\)

\(=\frac{3}{8}-\left(\frac{1}{8}-\frac{1}{50}\right)\)

\(=\frac{3}{8}-\frac{1}{8}+\frac{1}{50}\)

\(=\frac{1}{4}+\frac{1}{50}=\frac{27}{100}\)

18 tháng 9 2020

\(3x-\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}=2\frac{1}{10}\)

<=> \(3x-5\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{47\cdot50}\right)=\frac{21}{10}\)

<=> \(3x-5\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{47}-\frac{1}{50}\right)=\frac{21}{10}\)

<=> \(3x-5\left(\frac{1}{5}-\frac{1}{50}\right)=\frac{21}{10}\)

<=> \(3x-5\cdot\frac{9}{50}=\frac{21}{10}\)

<=> \(3x-\frac{9}{10}=\frac{21}{10}\)

<=> \(3x=3\)

<=> \(x=1\)

15 tháng 7 2023

`3x-15/(5*8)-15/(8*11)-15/(11*14)-...-15/(47*50)=2 1/10`

`3x-(15/(5*8)+15/(8*11)+15/(11*14)+...+15/(47*50))=21/10`

`3x-5(3/(5*8)+3/(8*11)+3/(11*14)+...+3/(47*50))=21/10`

`3x-5(1/5-1/8+1/8-1/11+1/11-1/14+...+1/47-1/50)=21/10`

`3x-5(1/5-1/50)=21/10`

`3x-5*9/50=21/10`

`3x-9/10=21/10`

`3x=21/10+9/10`

`3x=3`

`x=1`

Các vị ơi~Các vi9j giúp mị giải mấy bài này nhoa~Mị sẽ tích đúng những ai trả lời nha~ Bài 1 a,Tính giá trị biểu thức sau \(\dfrac{15}{11.14}\)+\(\dfrac{15}{14.17}\)+\(\dfrac{15}{17.20}\)+.....+\(\dfrac{15}{68.71}\) b,Tìm x biết rằng: \(\left(x-5\right)^{x+1}\)-\(\left(x-5\right)^{x+2015}\)=0 Bài 2:Chứng minh rằng: \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+......+\(\dfrac{1}{99^2}\)< 1 Bài 3:Cho các đa thức...
Đọc tiếp

Các vị ơi~Các vi9j giúp mị giải mấy bài này nhoa~Mị sẽ tích đúng những ai trả lời nha~

Bài 1

a,Tính giá trị biểu thức sau

\(\dfrac{15}{11.14}\)+\(\dfrac{15}{14.17}\)+\(\dfrac{15}{17.20}\)+.....+\(\dfrac{15}{68.71}\)

b,Tìm x biết rằng: \(\left(x-5\right)^{x+1}\)-\(\left(x-5\right)^{x+2015}\)=0

Bài 2:Chứng minh rằng:

\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+......+\(\dfrac{1}{99^2}\)< 1

Bài 3:Cho các đa thức sau:

A(x)=\(x^5\)-\(3x^3\)+\(2x^4\)-\(x^2\)+19x - \(\dfrac{2}{3}\)

B(x)=\(2x^4\)+\(x^5\)-\(3x^3\)-\(2x^2\)+17x - 7

a,Tìm đa thức H(x) biết H(x)=A(x)-B(x)

b,Chứng tỏ rằng đa thức H(x) không có nghiệm

Bài 4:Cho hai số dương khác nhau x và y.Có tồn tại hay không đẳng thức sau?

\(\dfrac{1}{x}\)=\(\dfrac{1}{x-y}\)+\(\dfrac{1}{y}\)

Bài 5:Cho tam giác ABC cân tại A, góc BAC=80 độ.Lấy điểm P ở trong tam giác ABC sao cho góc PBC=10 độ và PCB=20 độ.Đường cao AH của tam giác ABC cắt BP tại I

a,Chứng minh rằng IB=IC=IA

b,Kẻ AK vuông góc với BP,tia CP cắt tia AK tại Q.Chứng minh rằng IQ vuông góc AC

c,Tính số đo của góc APB

Bài 6:

Tìm cặp số(x,y) biết \(\dfrac{2x-1}{3}\)=y - 2=\(\dfrac{2x+y-3}{2x}\)

Các vị giúp mị nhoa~Đi mà~Giups mị nhoa hahavuihiungaingungok



6
29 tháng 4 2017

câu 1.

đặt A=\(\dfrac{15}{11.14}+\dfrac{15}{14.17}+...+\dfrac{15}{65.68}+\dfrac{15}{68.71}\)

xét \(\dfrac{A}{3}\)=\(\dfrac{15}{3.11.14}+\dfrac{15}{3.14.17}+...+\dfrac{15}{3.65.68}+\dfrac{15}{3.68.71}\)

ta có:+ \(\dfrac{15}{3.11.14}=\dfrac{15}{3}\left(\dfrac{1}{11}-\dfrac{1}{14}\right)=\dfrac{15}{3.11}-\dfrac{15}{3.14}\)

tương tự ta có:

+\(\dfrac{15}{3.11.14}=\dfrac{15}{3.11}-\dfrac{15}{3.14}\)

+\(\dfrac{15}{3.14.17}=\dfrac{15}{3.14}-\dfrac{15}{3.17}\)

....

+\(\dfrac{15}{3.65.68}=\dfrac{15}{3.65}-\dfrac{15}{3.68}\)

+\(\dfrac{15}{3.68.71}=\dfrac{15}{3.68}-\dfrac{15}{3.71}\)

cộng vế theo vế ta đc:

\(\dfrac{15}{3.11.14}+\dfrac{15}{3.14.17}+...+\dfrac{15}{3.65.68}+\dfrac{15}{3.68.71}\)

=\(\dfrac{15}{3.11}-\dfrac{15}{3.14}+\dfrac{15}{3.14}-\dfrac{15}{3.17}+...+\dfrac{15}{3.65}-\dfrac{15}{3.68}+\dfrac{15}{3.68}-\dfrac{15}{3.71}=\dfrac{15}{3.11}-\dfrac{15}{3.71}\)

=> \(\dfrac{A}{3}\)=\(\dfrac{15}{3.11}-\dfrac{15}{3.71}\)

=> A= \(\dfrac{15}{11}-\dfrac{15}{17}=\dfrac{90}{187}\)

29 tháng 4 2017

câu 1b.

trước khi làm bài này có chú ý này:\(0^n=0\)với n\(\ne0\)\(a^0=1\)với a\(\ne0\)

đặt: \(t=\left(x-5\right)\Rightarrow\left\{{}\begin{matrix}\left(x-5\right)^{x+1}=\left(x-5\right)^{x-5+6}=t^{t+6}\\\left(x-5\right)^{x+2015}=\left(x-5\right)^{x-5+2020}=t^{t+2020}\end{matrix}\right.\)

=> \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+2015}=0\)

\(\Leftrightarrow\)\(t^{t+6}-t^{t+2020}=0\Leftrightarrow t^{t+6}\left(1-t^{2014}\right)=0\Leftrightarrow\left[{}\begin{matrix}t^{t+6}=0^{t+6}\\1-t^{2014}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t^{2014}=1=1^{2014}\Rightarrow t=1\end{matrix}\right.\)với t=0 => x-5=0=> x=5

với t=1=> x-5=1=>x=6